

CONTENTS	IN	DETAIL

TITLE	PAGE

COPYRIGHT

DEDICATION

ABOUT	THE	AUTHOR

ACKNOWLEDGMENTS

INTRODUCTION
About	This	Book
What’s	in	This	Book?

PART	I:	GETTING	STARTED

CHAPTER	1:	SETTING	UP	PYTHON,	ANACONDA,	AND
SPYDER

Introducing	Anaconda	and	Spyder
Installing	Anaconda	and	Spyder

Install	Anaconda	and	Spyder	in	Windows
Install	Anaconda	and	Spyder	in	macOS
Install	Anaconda	and	Spyder	in	Linux

Using	Spyder

Write	Python	in	Spyder
Inspect	Code	in	Spyder

Understanding	Coding	in	Python

Python	Syntax
Basic	Operations	in	Python

Summary
End-of-Chapter	Exercises

CHAPTER	2:	PYTHON	REFRESHER
Variables	and	Values

Strings
Floats
Integers
Bools
Convert	Variable	Types
Rules	for	Variable	Names

Loops	and	Conditional	Execution

Conditional	Execution
Loops
Loops	in	Loops
Loop	Commands

Strings

String	Indexing
String	Slicing
String	Methods

Lists

Create	a	List
Access	Elements	in	a	List
Use	a	List	of	Lists
Add	or	Multiply	Lists
List	Methods
Use	Built-in	Functions	with	Lists

list()

Dictionaries

Access	Values	in	a	Dictionary
Use	Dictionary	Methods
How	to	Use	Dictionaries
Switch	Keys	and	Values
Combine	Two	Dictionaries

Tuples
Functions

Use	Built-in	Python	Functions
Define	Your	Own	Functions

Modules

Import	Modules
Create	Your	Own	Modules
Use	Third-Party	Modules

Create	a	Virtual	Environment

Activate	the	Virtual	Environment	in	Windows
Set	Up	Spyder	in	the	Virtual	Environment	in	Windows

Summary
End-of-Chapter	Exercises

PART	II:	LEARNING	TO	TALK

CHAPTER	3:	SPEECH	RECOGNITION
Install	the	SpeechRecognition	Module

In	Windows
In	Mac	or	Linux

Test	and	Fine-Tune	SpeechRecognition

Import	SpeechRecognition

Test	SpeechRecognition
Fine-Tune	the	Speech	Recognition	Feature

Perform	a	Voice-Controlled	Web	Search

Use	the	webbrowser	Module
Add	Voice	Control
Perform	a	Google	Search

Open	Files

Use	the	os	and	pathlib	Modules	to	Access	and	Open	Files
Open	Files	via	Voice	Control

Create	and	Import	a	Local	Module

Create	the	Local	Module	mysr
Import	mysr

Summary
End-of-Chapter	Exercises

CHAPTER	4:	MAKE	PYTHON	TALK
Install	the	Text-to-Speech	Module

Setup
Test	Your	Text-to-Speech	Module

Repeat	After	Me
Customize	the	Speech

Retrieve	Default	Settings	in	the	pyttsx3	Module	in	Windows
Adjust	Speech	Properties	in	the	pyttsx3	Module	in	Windows
Customize	the	gTTS	Module	in	Mac	or	Linux

Build	the	Local	mysay	Module

Create	mysay
Import	mysay

Build	a	Voice-Controlled	Calculator

Read	a	File	Aloud
Summary
End-of-Chapter	Exercises

CHAPTER	5:	SPEAKING	APPLICATIONS
Create	Your	Self-Made	Local	Python	Package

What’s	a	Python	Package?
Create	Your	Own	Python	Package
Test	Your	Package
More	on	Python	Packages

Interactive	Guess	the	Number	Game
Speaking	Newscast

Scrape	the	News	Summary
Add	the	Text-to-Speech	Features

Voice-Controlled	Wikipedia

Access	Wikipedia
Add	Speech	Recognition	and	Text	to	Speech

Voice-Activated	Music	Player

Traverse	Files	in	a	Folder
Python,	Play	Selena	Gomez
Python,	Play	a	Country	Song

Summary
End-of-Chapter	Exercises

CHAPTER	6:	WEB	SCRAPING	PODCASTS,	RADIOS,	AND
VIDEOS

A	Primer	on	Web	Scraping

What	Is	HTML?
Extract	Information	with	Beautiful	Soup

Scrape	Live	Web	Pages
Voice-Activated	Podcasts

Extract	and	Play	Podcasts
Voice-Activate	Podcasts

Voice-Activated	Radio	Player

Install	the	selenium	Module
Control	Web	Pages
Voice-Activate	Live	Radio

Voice-Activated	Videos
Summary
End-of-Chapter	Exercises

CHAPTER	7:	BUILDING	A	VIRTUAL	PERSONAL	ASSISTANT
An	Overview	of	Your	VPA

Download	VPA	Files
Install	the	arrow	Module

Manage	the	Standby	Mode

Create	the	Local	Module	mywakeup
Set	Some	Responses

Ask	Your	VPA	to	Set	a	Timer

Tell	the	Time	with	Python
Build	a	Timer
Create	the	mytimer	Module
Set	the	Timer

Ask	Your	VPA	to	Set	an	Alarm	Clock

Build	an	Alarm	Clock
Create	the	Alarm	Clock	Module
Set	an	Alarm

Ask	Your	VPA	to	Tell	a	Joke

Create	Your	Joke	List
Create	a	Joke	Module
Tell	a	Joke

Send	Hands-Free	Email

Send	Email	with	Written	Commands
Create	the	Email	Module
Add	the	Email	Functionality

Summary
End-of-Chapter	Exercises

CHAPTER	8:	KNOW-IT-ALL	VPA
Get	Answers	from	WolframAlpha

Apply	for	an	API	Key
Retrieve	Information
Explore	Different	Areas	of	Knowledge

Add	a	Know-It-All	Functionality	to	Your	VPA

What	WolframAlpha	Cannot	Answer
Create	the	myknowall	Module
A	VPA	That	Can	Answer	(Almost)	Any	Question	for	You

Summary

PART	III:	INTERACTIVE	GAMES

CHAPTER	9:	GRAPHICS	AND	ANIMATION	WITH	THE	TURTLE
MODULE

Basic	Commands

Create	a	turtle	Screen
Create	Movements

Basic	Shapes

Use	the	dot()	Function
Draw	Your	Own	Shapes
Draw	Grid	Lines

Animation

How	Animation	Works
Use	Multiple	Turtles

Summary
End-of-Chapter	Exercises

CHAPTER	10:	TIC-TAC-TOE
Game	Rules
Draw	the	Game	Board
Create	the	Game	Pieces

How	Mouse	Clicks	Work	in	turtle
Convert	Mouse	Clicks	to	Cell	Numbers
Place	Game	Pieces

Determine	Valid	Moves,	Wins,	and	Ties
Voice-Controlled	Version
Summary
End-of-Chapter	Exercises

CHAPTER	11:	CONNECT	FOUR
Game	Rules
Draw	the	Game	Board
The	Mouse-Click	Version

Drop	a	Disc
Animate	the	Falling	Discs

Determine	Valid	Moves,	Wins,	and	Ties

The	Voice-Controlled	Version
Summary
End-of-Chapter	Exercises

CHAPTER	12:	GUESS-THE-WORD	GAME
Game	Rules
Draw	the	Game	Board
The	Text	Version

Load	the	Coins
Guess	the	Letters
Determine	Valid	Guesses,	Wins,	and	Losses

The	Voice-Controlled	Version
Summary
End-of-Chapter	Exercises

CHAPTER	13:	SMART	GAMES:	ADDING	INTELLIGENCE
The	Think-Three-Steps-Ahead	Strategy

Think	One	Step	Ahead
Think	Two	Steps	Ahead
Implement	the	Think-Two-Steps-Ahead	Strategy
Think	Three	Steps	Ahead

The	Machine-Learning	Strategy

Create	a	Dataset	of	Simulated	Games
Apply	the	Data

Test	the	Effectiveness	of	the	Two	Strategies

The	Think-Three-Steps-Ahead	Strategy
The	Machine-Learning	Strategy
Why	Doesn’t	the	Machine-Learning	Strategy	Work	Well	in
Connect	Four?

Voice-Controlled	Intelligent	Connect	Four	Games

A	Voice-Controlled	Game	That	Thinks	Ahead
A	Voice-Controlled	Game	Using	Machine	Learning

Summary
End-of-Chapter	Exercises

PART	IV:	GOING	FURTHER

CHAPTER	14:	FINANCIAL	APPLICATIONS
Python,	What’s	the	Facebook	Stock	Price?

Obtain	the	Latest	Stock	Price
Find	Ticker	Symbols
Retrieve	Stock	Prices	via	Voice

Voice-Controlled	Data	Visualization

Create	Stock	Price	Plots
Create	Candlestick	Charts
Add	Voice	Control

Voice-Controlled	Stock	Report

Analyze	Recent	Stock	Performance	and	Risk
Add	Voice	Control

Summary
End-of-Chapter	Exercises

CHAPTER	15:	STOCK	MARKET	WATCH
Bitcoin	Watch

How	to	Read	JSON	Data
A	Graphical	Bitcoin	Watch
A	Talking	Bitcoin	Watch

A	Talking	Stock	Market	Watch

Apply	the	Method	to	Other	Financial	Markets
Summary
End-of-Chapter	Exercises

CHAPTER	16:	USE	WORLD	LANGUAGES
Text	to	Speech	in	Other	Languages

Install	Modules
Convert	Text	to	Speech	in	Spanish
Support	Text	to	Speech	in	Other	Languages
Convert	Text	to	Speech	in	World	Languages

Speech	Recognition	in	Major	World	Languages
A	Talking	Wikipedia
Create	Your	Own	Voice	Translator

A	Text-Based	Translator
A	Voice-Based	Translator

Summary

CHAPTER	17:	ULTIMATE	VIRTUAL	PERSONAL	ASSISTANT
An	Overview	of	the	Final	VPA
The	Chatting	Functionality
The	Music	Functionality

Create	a	Music	Module
Activate	the	Music	Functionality

The	News	Brief	Module

Create	a	News	Module
Activate	the	News	Functionality

The	Live	Radio	Module

Create	a	Radio	Module
Activate	the	Radio	Functionality

The	Tic-Tac-Toe	Module

Create	a	Tic-Tac-Toe	Module
Activate	Tic-Tac-Toe

The	Connect	Four	Module

Create	a	Connect	Four	Module
Activate	Connect	Four

The	Stock	Price	Module

Create	a	Stock	Market–Tracking	Module
Activate	the	Stock	Market–Tracking	Functionalities

The	Voice	Translator	Module

Create	a	Translator	Module
Activate	the	Voice	Translator

Summary

APPENDIX	A:	INSTALL	MODULES	TO	PLAY	AUDIO	FILES
Install	the	playsound	Module

Windows
Mac
Linux

Install	the	pydub	Module
Install	the	pygame	Module

Windows
Mac
Linux

Install	the	vlc	Module
Sample	Scripts	to	Test	the	Four	Modules

The	playsound	Module
The	pydub	Module

The	pygame	Module
The	vlc	Module

APPENDIX	B:	SUGGESTED	ANSWERS	TO	END-OF-CHAPTER
EXERCISES

Chapter	1
Chapter	2
Chapter	3
Chapter	4
Chapter	5
Chapter	6
Chapter	7
Chapter	9
Chapter	10
Chapter	11
Chapter	12
Chapter	13
Chapter	14
Chapter	15

INDEX

MAKE	PYTHON	TALK

Build	Apps	with	Voice	Control	and	Speech
Recognition

by	Mark	Liu

MAKE	PYTHON	TALK.	Copyright	©	2021	by	Mark	Liu.

All	rights	reserved.	No	part	of	this	work	may	be	reproduced	or	transmitted	in	any	form	or	by	any	means,
electronic	or	mechanical,	including	photocopying,	recording,	or	by	any	information	storage	or	retrieval
system,	without	the	prior	written	permission	of	the	copyright	owner	and	the	publisher.

ISBN-13:	978-1-7185-0156-0	(print)
ISBN-13:	978-1-7185-0157-7	(ebook)

Publisher:	William	Pollock
Production	Manager:	Rachel	Monaghan
Production	Editor:	Paula	Williamson
Developmental	Editor:	Liz	Chadwick
Cover	Illustrator:	Gina	Redman
Interior	Design:	Octopod	Studios
Technical	Reviewer:	Noah	Spahn
Copyeditor:	Sharon	Wilkey
Compositor:	Jeff	Lytle,	Happenstance	Type-O-Rama
Proofreader:	Paula	Fleming
Indexer:	JoAnne	Burek

For	information	on	book	distributors	or	translations,	please	contact	No	Starch	Press,	Inc.	directly:
No	Starch	Press,	Inc.
245	8th	Street,	San	Francisco,	CA	94103
phone:	1.415.863.9900;	info@nostarch.com
www.nostarch.com

Library	of	Congress	Control	Number:	2021938060

No	Starch	Press	and	the	No	Starch	Press	logo	are	registered	trademarks	of	No	Starch	Press,	Inc.	Other
product	and	company	names	mentioned	herein	may	be	the	trademarks	of	their	respective	owners.	Rather
than	use	a	trademark	symbol	with	every	occurrence	of	a	trademarked	name,	we	are	using	the	names	only	in
an	editorial	fashion	and	to	the	benefit	of	the	trademark	owner,	with	no	intention	of	infringement	of	the
trademark.

Dedicated	to
Ivey,	Andrew,
and	all	MS
Finance	students
(past,	present,
and	future)	at	the
University	of
Kentucky.

About	the	Author
Dr.	Mark	H.	Liu	is	the	founding	director	of	the	Master	of	Science	in	Finance
program	at	the	University	of	Kentucky,	where	he	holds	the	title	of	Associate
Professor	of	Finance	with	tenure.	He	has	a	Ph.D.	in	finance	from	Boston
College,	and	has	been	published	in	top	finance	journals,	including	Journal	of
Financial	Economics,	Journal	of	Financial	and	Quantitative	Analysis,	and
Journal	of	Corporate	Finance.	Dr.	Liu	has	more	than	20	years	of	coding
experience	in	C++,	SAS,	Stata,	and	Python	and	runs	Python	workshops	for
Finance	master	students	at	the	University	of	Kentucky.	He	has	also	incorporated
Python	in	finance	courses	he	is	teaching.

About	the	Technical	Reviewer
Noah	Spahn	is	presently	enjoying	the	role	of	Software	Engineer	for	the
Computer	Security	Group	at	UCSB	(known	as	SecLab)	and	their	world-famous
hacking	team:	Shellphish.	Prior	to	his	current	academic	role,	he	ran	his	own
consulting	business,	allowing	him	to	work	on	a	wide	variety	of	projects,	with	a
broad	spectrum	and	languages,	and	collaborate	with	varying	teams.	Fluency	in
Python	has	opened	many	doors	for	Spahn,	providing	the	opportunity	to
contribute	to	the	areas	of	natural	sciences	(oceanography,	ecohydrology,
seismology),	computer	science	(network	traffic	analysis,	machine	learning,
binary	analysis),	open-source	projects	(NASA,	Kubernetes,	and	others),	as	well
as	many	practical	applications.	Spahn	holds	a	Master	of	Software	Engineering
degree	from	California	State	University,	Fullerton.	He	has	taught	courses	in
Python	at	the	University	of	California	and	Santa	Barbara’s	interdisciplinary
Collaboratory,	and	has	taught	an	upper-division	course	on	the	concepts	of
programming	languages	at	Westmont	College.	Spahn	is	glad	to	teach	anyone
who	is	interested	in	learning.

ACKNOWLEDGMENTS

Many	people	have	helped	to	make	this	book	a	reality.	A	portion	of	this	book	was
developed	while	I	was	preparing	Python	workshops	for	MS	Finance	students	at
the	University	of	Kentucky	in	the	past	few	years.	Several	Finance	master	and
Ph.D.	students	helped	tremendously	in	the	process:	Joe	Farizo,	James	Keyser,
Blake	Best,	and	especially	my	teaching	assistants	at	the	time	Mike	Farrell	and
Patrick	Mullins.	I’d	like	to	thank	all	MS	Finance	students	for	keeping	me
motivated	to	learn	new	Python	skills	in	order	to	show	them	how	useful	and
interesting	coding	is.

I’d	also	like	to	thank	Bill	Pollock	and	Barbara	Yien	at	No	Starch	Press	for
guiding	me	through	the	editorial	process.	Special	thanks	to	my	developmental
editor	Liz	Chadwick,	whose	pursuit	for	perfection	has	greatly	improved	the
book.	She	helped	me	find	the	delicate	balance	between	over-explaining	and	not
enough	detail.

Many	thanks	to	the	technical	reviewer	of	the	book	Noah	Spahn.	He	doesn’t
simply	check	if	the	code	works	correctly,	he	also	makes	sure	the	scripts	are	as
efficient	as	they	can	be.	A	case	in	point	is	that	he	pushed	me	to	find	a	way	to
make	the	self-made	modules	in	different	chapters	consistent.	This	prompted	me
to	use	the	self-made	Python	package	in	the	book.	He	went	way	beyond	just
checking	the	scripts,	and	frequently	edited	the	writing	to	help	explain	technical
details	in	the	book.

Last	but	not	least,	I’d	like	to	thank	my	wife	Ivey	Zhang	and	my	son	Andrew
Liu	for	being	so	supportive	in	this	journey.	In	the	past	couple	of	years,	I
probably	have	spent	more	time	with	the	book	than	with	them	over	the	weekends
and	holidays.	I	am	indebted	to	them	the	most.

INTRODUCTION

Banks	are	essentially	technology	firms.

—Hugo	Banziger,	former	chief	risk	officer	at	Deutsche	Bank

Python	is	currently	the	world’s	most
popular	coding	language,	having	overtaken
more	long	established	languages	like	Java

and	C.	Once	you	start	to	code	in	Python,	it’s	easy	to	see
why.	The	two	main	advantages	of	Python	are	its
simplicity	and	openness.	Python	code	is	relatively	close
to	plain	English,	so	with	only	a	little	experience,	you	can
often	guess	what	a	script	is	trying	to	accomplish.
Python	is	open	source,	meaning	not	only	that	the	software	is	free	to	use	for

everyone	but	also	that	other	users	can	create	and	alter	libraries.	In	fact,	Python
has	a	vast	ecosystem	from	which	you	can	get	resources	and	help	from	members
in	the	community.	Python	programmers	can	share	their	code	with	one	another,	so
instead	of	building	everything	from	scratch,	you	can	import	modules	designed
by	others,	as	well	as	share	your	modules	with	others	in	the	Python	community.

When	people	heard	that	I	was	writing	a	Python	book	on	speech	recognition
and	text	to	speech,	their	reaction	was	generally	the	same:	“I	thought	you	were	a
finance	professor.”	My	typical	answer	is	the	Hugo	Banziger	quote	that	opens	this
chapter,	made	shortly	after	the	2008	financial	crisis.	Nowadays,	you	can	replace
banks	with	corporations	in	any	other	industry—car	manufacturers,	retailers,
anything	really—and	the	quote	still	rings	true.	Technology	is	in	every	aspect	of
our	lives	these	days.	The	future	is	here	and	now.

Python	has	been	the	world’s	most	popular	coding	language	since	2018.	Long
before	that,	Python	was	the	leading	programming	language	in	the	finance	world,
with	applications	in	financial	services,	portfolio	management,	algorithmic
trading,	cryptocurrency,	and	so	on.

NOTE

The	article	“Python	Is	Becoming	the	World’s	Most	Popular	Coding
Language”	in	The	Economist	(https://www.economist.com/graphic-
detail/2018/07/26/python-is-becoming-the-worlds-most-popular-coding-
language/)	has	details	on	the	increasing	popularity	of	Python.

When	talking	to	potential	employers	of	my	Master	of	Science	in	Finance
(MSF)	students,	I	was	told	that	they	have	people	who	know	finance,	but	not
coding—and	people	who	know	coding,	but	nothing	about	finance.	They	wanted
to	hire	people	who	understood	both.	As	a	result,	we	started	to	incorporate	Python
into	the	MSF	curriculum.

The	reactions	from	the	finance	students	were	mixed.	Many	students	found
Python	user-friendly	and	versatile,	while	others	wondered	why	they	needed	to
bother	learning	Python	when	they	could	do	everything	in	Microsoft	Excel.	So	I
started	to	show	them	cool	skills	in	Python	that	are	impossible	in	Excel,	such	as
obtaining	real-time	stock	prices	via	voice	commands,	creating	a	talking
graphical	US	stock	market	watch,	and	so	on.	I	wanted	to	show	that	Python	can
accomplish	more	than	Excel,	that	the	barrier	to	entry	is	not	very	high,	and	most
important,	that	it’s	fun!

In	this	book,	I	focus	on	speech	recognition	and	text-to-speech	functionality	in
fun	and	genuinely	useful	applications,	such	as	a	voice	translator,	a	voice-
controlled	online	radio,	a	virtual	personal	assistant,	voice-controlled	graphical
games,	and	so	on.	My	aim	is	to	teach	Python	skills	that	are	applicable	and
adaptable	in	real	life,	while	keeping	the	skeptical	students	of	Python	interested	in
what	they’re	doing.

About	This	Book
This	book	both	is	and	isn’t	an	introductory	book	on	Python.	While	it’s	not
intended	as	a	full	tutorial	in	Python	basics,	it	is	written	simply	enough	that	a	total

https://www.economist.com/graphic-detail/2018/07/26/python-is-becoming-the-worlds-most-popular-coding-language
http:///

beginner	can	follow	along.	You’ll	learn	how	to	install	Python	on	your	computer
and	write	your	very	first	script.	You’ll	also	learn	the	basic	rules	of	Python,	how
functions	and	modules	work,	and	various	data	types	every	Python	user	needs	to
know.	With	this,	you’ll	be	able	to	accomplish	most	simple	tasks	in	Python.

At	the	same	time,	this	book	isn’t	an	introductory	book	in	Python.	I’ll	provide	a
Python	refresher	that	will	prepare	you	for	later	chapters,	but	it	isn’t	a
comprehensive	introduction.	Several	wonderful	books	cover	all	the	basics	of
Python.	One	example	is	Python	Crash	Course	by	Eric	Matthes	(No	Starch	Press,
2019).

Beyond	the	refresher,	the	purpose	of	this	book	is	to	improve	your	skills	and
build	real	working	applications	you	can	use	in	your	daily	life.	This	book	also
eases	you	into	more	advanced	topics,	such	as	making	your	own	Python	modules
and	packages.	In	Chapter	3,	you’ll	learn	how	to	use	a	function	in	a	self-made
module	to	contain	all	speech	recognition	functionality	and	related	code	so	that
you	don’t	have	to	repeat	the	code	every	time	you	convert	speech	to	text.	In
Chapter	5,	you’ll	create	a	package	from	which	you	can	import	the	function	in	the
module	to	convert	speech	to	text	in	all	chapters	that	need	this	feature	(which	is
pretty	much	all	the	remaining	chapters	in	the	book).	Along	the	way,	you’ll	learn
how	Python	modules	and	packages	work.

The	end-of-chapter	exercises	are	a	great	tool	for	practicing	concepts	and
checking	that	you	really	understand	them.	You’ll	find	the	answers	at	the	end	of
the	book.

The	code	in	this	book	is	all	cross-platform,	so	it	should	work	in	Windows,
Mac,	or	Linux.	I’ll	address	the	differences	in	the	three	operating	systems
whenever	there	are	any.

What’s	in	This	Book?
This	book	is	divided	into	four	parts.	Part	I	discusses	how	to	install	Python,	as
well	as	the	basic	Python	rules	and	skills	you’ll	need	in	later	chapters.	Part	II
introduces	you	to	speech	recognition	and	text-to-speech	functionality,	including
how	to	install	and	fine-tune	the	required	modules.	You’ll	also	use	the	speech
recognition	and	text-to-speech	functionalities	to	create	a	virtual	personal
assistant.

Part	III	covers	interactive	games.	You’ll	learn	to	create	graphical	games	and
add	text-to-speech	and	speech	recognition	features	to	make	them	talk	and	take

voice	commands.	In	Part	IV,	we	build	some	applications	to	follow	the	financial
markets,	and	we’ll	see	how	to	make	Python	talk	and	listen	in	major	world
languages.	The	last	chapter	of	the	book	builds	our	ultimate	virtual	assistant	by
adding	the	interactive	games	and	the	voice	translator	to	it.	Here’s	an	overview	of
the	book:

Part	I:	Getting	Started

Chapter	1:	Setting	Up	Python,	Anaconda,	and	Spyder
You’ll	install	the	Python	software	required	for	the	book	and	start	running
Python	scripts,	even	if	you	know	nothing	about	coding.	We’ll	also	talk	about
basic	operations	in	Python.

Chapter	2:	Python	Refresher
You’ll	learn	how	to	use	the	built-in	Python	functions	and	how	to	import
modules	in	the	Python	Standard	Library.	You’ll	then	learn	how	functions	and
modules	work	and	how	to	create	your	own.	I’ll	discuss	ways	of	installing
these	modules	on	your	computer.	Finally,	you’ll	learn	about	virtual
environments,	their	uses,	and	how	to	create	and	activate	them.

Python	uses	strings,	lists,	dictionaries,	and	tuples	as	collections	of	elements
to	accomplish	certain	tasks.	In	this	chapter,	you’ll	learn	about	these	four	types
of	collections	and	see	examples	of	their	uses.

Part	II:	Learning	to	Talk

Chapter	3:	Speech	Recognition
You’ll	install	modules	related	to	speech	recognition	in	Python,	then	create	a
script	to	have	Python	recognize	your	speech	and	print	it	out.	You’ll	use	voice
control	to	complete	several	tasks,	such	as	taking	voice	dictation,	opening	web
browsers,	opening	files,	and	playing	music	on	your	computer.	To	save	space	in
your	scripts,	you’ll	learn	how	to	put	all	code	related	to	speech	recognition	into
a	custom	local	module	so	that	the	final	script	is	concise,	short,	and	clean.

Chapter	4:	Make	Python	Talk

Here,	you’ll	learn	how	to	make	Python	talk	back	to	you	in	a	human	voice.
You’ll	install	the	text-to-speech	module	and	teach	Python	to	speak	aloud
whatever	you	enter	into	Spyder.	We’ll	also	add	the	speech	recognition	feature
and	get	Python	to	repeat	whatever	you	say.	We’ll	store	all	code	related	to	text-
to-speech	functionality	in	another	custom	module.

Chapter	5:	Speaking	Applications
You’ll	put	the	speech	recognition	and	text-to-speech	functionality	from
Chapters	3	and	4	to	use	in	a	couple	of	applications.	First,	you’ll	parse	text	to
extract	news	summaries	from	National	Public	Radio	(NPR)	and	have	Python
read	them	out	to	you.	You’ll	also	build	a	script	to	extract	information	from
Wikipedia	based	on	your	voice	inquiries	and	speak	the	answers.	Finally,	you’ll
learn	how	to	traverse	files	in	a	folder	with	your	voice,	with	the	aim	of	building
your	very	own	Alexa.	You’ll	be	able	to	say,	“Python,	play	Selena	Gomez,”
and	a	song	by	Selena	Gomez	that’s	saved	on	your	computer	will	play.

Chapter	6:	Web	Scraping	Podcasts,	Radios,	and	Videos
You’ll	learn	the	basics	of	web	scraping.	I’ll	cover	how	HyperText	Markup
Language	(HTML)	works	to	construct	web	pages.	You’ll	parse	HTML	files
and	extract	information.	Then	you’ll	use	these	skills	to	voice-activate
podcasts,	live	radio	stations,	and	videos	on	various	websites.

Chapter	7:	Building	a	Virtual	Personal	Assistant
You’ll	create	your	own	virtual	personal	assistant	(VPA),	similar	to	Amazon’s
Alexa.	Whenever	you	need	assistance,	you	can	say	“Hello,	Python”	to	wake
up	your	VPA;	you’ll	also	use	voice	commands	to	put	it	in	standby	mode.	The
VPA	can	act	as	a	timer	and	an	alarm	clock,	tell	jokes,	and	send	email	100
percent	hands-free.

Chapter	8:	Know-It-All	VPA
Here	you’ll	add	know-it-all	functionality	to	your	VPA.	Specifically,	you’ll	tap
into	the	vast	knowledge	base	in	the	computational	engine	WolframAlpha	and
use	Wikipedia	as	a	backup	if	WolframAlpha	can’t	answer	your	question.	Your
know-it-all	VPA	is	capable	of	answering	almost	any	question	for	you.

Part	III:	Interactive	Games

Chapter	9:	Graphics	and	Animation	with	the	Turtle	Module
Our	goal	in	Part	III	is	to	build	voice-controlled	graphical	games	such	as	tic-
tac-toe,	Connect	Four,	and	guess-the-word.	You’ll	do	all	these	in	the	turtle
module.	In	this	chapter,	you’ll	learn	the	basic	turtle	commands	that	will	let
you	set	up	a	turtle	screen,	draw	shapes,	and	create	animations.

Chapter	10:	Tic-Tac-Toe
You’ll	build	a	voice-controlled	tic-tac-toe	game	to	put	all	the	new	skills
you’ve	learned	so	far	into	practice.	You’ll	draw	a	game	board,	check	for	valid
moves,	and	detect	if	a	player	has	won.	You’ll	then	add	the	speech	recognition
and	text-to-speech	features	and	set	up	the	game	so	you	play	against	your	own
computer.

Chapter	11:	Connect	Four
You’ll	next	build	a	voice-controlled	Connect	Four	game.	You’ll	draw	the
board,	animate	the	effect	of	a	disc	falling	from	the	top	of	a	column	to	the
lowest	available	cell,	and	use	Python	logic	to	enforce	a	new	set	of	game	rules.
Then	you’ll	add	speech	functionality	to	the	game.

Chapter	12:	Guess-the-Word	Game
You’ll	build	a	voice-controlled,	graphical	guess-the-word	game	that	is	an
adaptation	of	the	popular	hangman	game.	This	is	an	interesting	challenge
because	when	playing	guess-the-word,	players	often	exchange	information
verbally	at	a	fast	pace,	so	you’ll	need	to	fine-tune	the	script’s	listening
abilities.

Chapter	13:	Smart	Games:	Adding	Intelligence
In	the	one-player	version	of	tic-tac-toe	or	Connect	Four,	the	computer	always
randomly	selects	a	move.	In	this	chapter,	we’ll	build	smart	games	by	using
two	techniques	that	will	get	you	to	think	about	how	to	break	down	and	solve
problems	in	programming.	The	first	is	the	think-three-steps-ahead	approach,
which	has	the	computer	following	the	path	that	most	likely	leads	to	a	victory

after	three	moves.	The	second	method	uses	machine	learning.	You’ll	simulate
a	million	games	in	which	both	players	select	random	moves.	With	this	data,
the	computer	will	learn	at	each	move	and	select	the	one	most	likely	to	lead	to
a	winning	outcome.

Part	IV:	Going	Further

Chapter	14:	Financial	Applications
These	programming	skills	and	speech	recognition	and	text-to-speech
techniques	can	be	applied	to	any	aspect	of	your	life.	Here,	I’ll	show	you	how
to	adapt	your	skills	to	monitoring	the	financial	markets.	You’ll	then	be	able	to
generalize	these	techniques	and	apply	them	to	your	own	area	of	interest,
whatever	that	may	be.	You’ll	build	three	projects:	an	app	that	tells	you	the	up-
to-date	stock	price	of	any	publicly	traded	company;	a	script	that	builds
visualizations	of	stock	prices;	and	an	app	that	uses	recent	daily	stock	prices	to
calculate	returns,	run	regressions,	and	perform	detailed	analyses.

Chapter	15:	Stock	Market	Watch
You’ll	create	a	graphical,	speaking	app	that	watches	the	US	stock	market	live
and	updates	you	aloud	whenever	a	chosen	stock	exceeds	certain	preset
thresholds.	To	build	the	necessary	skills,	you’ll	first	create	a	graphical	Bitcoin
watch	by	using	tkinter	to	display	live	price	information.

Chapter	16:	Use	World	Languages
So	far,	we’ve	taught	Python	how	to	speak	and	listen	in	English.	But	Python
can	understand	many	other	world	languages.	In	this	chapter,	you’ll	first	teach
Python	to	talk	in	several	other	languages	with	the	modules	you’ve	been	using.
I’ll	then	introduce	a	useful	module	called	translate,	which	can	translate	one
language	to	another.	You’ll	use	it	to	build	a	translator	that	changes	whatever
you	speak	into	another	language	of	your	choice.

Chapter	17:	Ultimate	Virtual	Personal	Assistant
You’ll	load	up	your	virtual	personal	assistant	with	the	interesting	projects	in
this	book,	like	voice-controlled	games,	translators,	music	players,	and	so	on.
You’ll	first	add	a	chatting	functionality	to	the	VPA	so	you	can	carry	out	a	daily

conversation	with	the	script.	The	whole	idea	of	a	VPA	is	its	convenience,	so
we’ll	adjust	these	projects	so	that	all	added	functionalities	are	100	percent
hands-free.

Appendix	A:	Install	Modules	to	Play	Audio	Files
Since	the	focus	of	the	book	is	on	making	Python	talk	and	listen,	playing	audio
files	is	important.	This	appendix	presents	a	few	modules	you	can	use	to	play
audio	files,	along	with	their	advantages	and	disadvantages.

Appendix	B:	Answers	to	End-of-Chapter	Exercises
This	appendix	provides	suggested	answers	to	all	the	exercises	at	the	end	of	the
chapters.	You	can	use	these	answers	to	check	your	own	and	for	help	if	you	get
stuck	on	any	of	the	questions.

PART	I
GETTING	STARTED

1
SETTING	UP	PYTHON,	ANACONDA,	AND

SPYDER

Even	if	you’ve	never	coded	before,	this
chapter	will	guide	you	through	installing
the	Python	software	you	need	to	start

running	Python	scripts	for	this	book.	We’ll	be	using
Anaconda	and	Spyder,	so	we’ll	discuss	the	advantages	of
choosing	this	Python	distribution	and	development
environment,	respectively.	I’ll	guide	you	through	the
installation	process	based	on	your	operating	system,
whether	that’s	Windows,	Mac,	or	Linux.	Then	you’ll
learn	how	to	start	coding	in	the	Spyder	editor.	We’ll
discuss	basic	Python	rules	and	operations	at	the	end.
Before	you	begin,	set	up	the	folder	/mpt/ch01/	for	this	chapter	on	your

computer.	All	scripts	in	this	chapter	(and	later	chapters)	are	available	at	the
book’s	resources	page,	https://www.nostarch.com/make-python-talk/.

NEW	SKILLS

Installing	Anaconda	on	your	computer	based	on	your	operating	system

Writing	Python	scripts	in	the	Spyder	editor

Executing	Python	code	line	by	line	or	block	by	block	or	running	the	whole	script

Understanding	Python	syntax

https://www.nostarch.com/make-python-talk/

Performing	basic	mathematical	operations

Introducing	Anaconda	and	Spyder
There	are	many	ways	to	install	Python	and	run	scripts.	In	this	book,	we’ll	use
Anaconda	and	Spyder.

Anaconda	is	an	open	source	Python	distribution,	package,	and	environment
manager.	It	is	user	friendly	and	provides	for	the	easy	installation	of	many	useful
Python	modules	that	otherwise	can	be	quite	a	pain	to	compile	and	install
yourself.	We’ll	start	by	downloading	the	Anaconda	distribution	of	Python	that
comes	bundled	with	Spyder.

Spyder	is	a	full-featured	integrated	development	environment	(IDE)	for
writing	scripts.	It	comes	with	many	useful	features	such	as	automatic	code
completion,	automatic	debugging,	code	suggestions,	and	warnings.

Installing	Anaconda	and	Spyder
Python	is	a	cross-platform	programming	language,	meaning	you	can	run	Python
scripts	whether	you	use	Windows,	Mac,	or	Linux.	However,	the	installation	of
software	and	modules	can	be	slightly	different	depending	on	your	operating
system.	I’ll	show	you	how	to	install	various	modules	in	your	operating	system.
Once	these	are	properly	installed,	Python	code	works	the	same	in	different
operating	systems.

Install	Anaconda	and	Spyder	in	Windows
To	install	Anaconda	in	Windows,	go	to
https://www.anaconda.com/products/individual/	and	download	the	latest	version
of	Python	3	for	Windows.

I	recommend	using	the	graphical	installer	instead	of	the	command	line
installer,	especially	for	beginners,	to	avoid	mistakes.	Make	sure	you	download
the	appropriate	32-	or	64-bit	package	for	your	machine.	Run	the	installer	and
follow	the	instructions	all	the	way	through.

Find	and	open	the	Anaconda	navigator,	and	you	should	see	a	screen	like
Figure	1-1	(if	you	need	to,	search	for	Anaconda	navigator	in	the	search	bar).

https://www.anaconda.com/products/individual/

Figure	1-1:	The	Anaconda	navigator

Click	the	Launch	button	under	the	Spyder	icon.	If	Spyder	is	not	already
installed,	click	Install	to	install	the	Spyder	development	environment.	After	it
finishes,	click	Launch.

Install	Anaconda	and	Spyder	in	macOS
To	install	Python	via	Anaconda	for	macOS,	go	to
https://www.anaconda.com/products/individual/,	scroll	down,	and	download	the
latest	version	of	Python	3	for	Mac.	Choose	the	graphical	installer	and	follow	the
instructions	through.

Open	the	Anaconda	navigator	by	searching	for	Anaconda	navigator	in
Spotlight	search.	The	screen	for	the	Anaconda	navigator	in	macOS	should	look
similar	to	Figure	1-1,	perhaps	with	slight	differences.

To	launch	Spyder,	click	Launch	under	the	Spyder	icon	(if	you	see	an	Install
button	instead,	click	it	to	install	Spyder	first).

Install	Anaconda	and	Spyder	in	Linux
The	installation	of	Anaconda	and	Spyder	in	Linux	involves	more	steps	than	for
other	operating	systems.	First,	go	to

https://www.anaconda.com/products/individual/

https://www.anaconda.com/products/individual/,	scroll	down,	and	find	the	latest
Linux	version.	Choose	the	appropriate	x86	or	Power8	and	Power9	package.
Click	and	download	the	latest	installer	bash	script.	For	example,	the	installer
bash	script	during	my	installation	was
https://repo.anaconda.com/archive/Anaconda3-2020.11-Linux-x86_64.sh.	This
link	will	change	over	time,	but	we’ll	use	this	version	as	our	example.

By	default,	the	installer	bash	script	is	downloaded	and	saved	to	the
Downloads	folder	on	your	computer.	You	should	then	install	Anaconda	as
follows	using	the	path	for	your	bash	script	if	it	is	different.

bash	~/Downloads/Anaconda3-2020.11-Linux-x86_64.sh

After	pressing	ENTER,	you’ll	be	prompted	to	review	and	approve	the	license
agreement.	The	last	question	in	the	installation	process	is	this:

installation	finished.

Do	you	wish	the	installer	to	prepend	the	Anaconda3	install	

location	to	PATH	

in	your	/home/mark/.bashrc	?	[yes|no]

[no]	>>>

You	should	type	yes	and	press	ENTER	in	order	to	use	the	conda	command	to
open	Anaconda	in	a	terminal.

WARNING

Since	the	default	choice	is	no	in	this	step,	it’s	easy	to	make	a	mistake	by
pressing	ENTER	without	typing	in	yes.	If	that	occurs,	enter	the	following
command	in	the	terminal:

gedit	/home/your	user	name	here/.bashrc

You’ll	need	to	enter	your	actual	username	in	the	path.	My	username	is
mark,	so	my	full	path	is	/home/mark/.bashrc.	Once	you	execute	this
command,	the	.bashrc	file	should	open.	Enter	this	as	a	new	line	at	the
end	of	the	file:

export	PATH=/home/your	user	name	here/anaconda3/bin:$PATH	

https://www.anaconda.com/products/individual/
https://repo.anaconda.com/archive/Anaconda3-2020.11-Linux-x86_64.sh

Then	save	and	close	the	file.

Now	you	need	to	activate	the	installation	by	executing	this	command:

source	~/.bashrc

To	open	Anaconda	navigator,	enter	the	following	command	in	a	terminal:

anaconda-navigator

You	should	see	the	Anaconda	navigator	on	your	machine,	similar	to	Figure	1-
1.	To	launch	Spyder,	click	the	Launch	button	under	the	Spyder	icon	(if	you	see
an	Install	button	instead,	click	it	to	install	Spyder	first).

Using	Spyder
To	get	you	up	and	running,	we’ll	build	a	really	simple	script	in	Spyder.	Then	I’ll
run	through	a	few	basic	concepts	that’ll	be	useful	to	know	before	you	start
coding	for	real.

Write	Python	in	Spyder
As	mentioned	earlier,	Spyder	is	a	full-featured	IDE.	Let’s	start	with	a	simple
script.	After	you	launch	the	Spyder	development	environment,	you	should	see	a
layout	like	Figure	1-2.

Figure	1-2:	Spyder	development	environment

Spyder	comes	with	several	predefined	layouts,	and	you	can	customize	layouts
according	to	your	preferences.	The	default	layout	has	three	panels.	Let’s
examine	that	default.

At	the	left	is	the	Spyder	editor,	in	which	you	can	write	Python	code.	At	the	top
right	is	the	variable	explorer,	which	shows	the	details	of	the	data	generated	by
your	script.	As	scripts	become	quite	complicated,	the	variable	explorer	becomes
a	valuable	asset	in	double-checking	the	values	stored	in	your	variables.

At	the	bottom	right	is	the	interactive	Python	(IPython)	console,	which	shows
the	output	of	the	script	or	executes	snippets	of	Python	code.	The	IPython	console
is	also	where	you	enter	input	for	scripts	that	require	user	information.	It	also
displays	error	messages	if	you	make	a	mistake	in	your	script.

Now	let’s	start	coding.	Go	to	the	Spyder	editor	window	(again,	the	default
location	is	on	the	left)	and	enter	this:

print("This	is	my	very	first	Python	script!")

Click	File▶Save	As	and	save	the	file	as	my_first_script.py	in	your	chapter
folder.

There	are	three	ways	to	run	scripts,	and	all	lead	to	the	same	outcome:

1.	 Go	to	the	Run	menu	and	select	Run.

2.	 Press	F5	on	your	keyboard.

3.	 Press	the	green	triangle	icon	►	in	the	icons	bar.

Run	the	script	and	you	should	see	something	like	Figure	1-3.	The	output,
shown	in	the	IPython	console,	is	a	simple	printed	message:	This	is	my	very
first	Python	script!	Congratulations—you	have	written	and	successfully	run
your	first	Python	script!

Figure	1-3:	Running	a	script	in	the	Spyder	development	environment

Inspect	Code	in	Spyder
Besides	running	an	entire	script,	Spyder	has	the	ability	to	run	code	line	by	line	or
block	by	block.	Running	a	piece	of	a	script	at	a	time	is	useful	for	carefully
following	the	execution	of	a	script,	to	verify	that	it	does	exactly	what	you
intended	it	to	do.	Go	back	to	the	my_first_script.py	example	and	add	another
line:

print("This	is	my	second	Python	message!")

Place	your	cursor	over	this	second	line	and	press	F9,	and	you	should	see	the
output	shown	in	Figure	1-4.

Figure	1-4:	Running	just	one	line	of	code	in	the	Spyder	editor

As	you	can	see,	only	the	highlighted	line	is	executed.	Here’s	the	output:

This	is	my	second	Python	message!

Now	press	F5,	and	you’ll	see	that	every	line	in	the	script	is	executed:

This	is	my	very	first	Python	script!

This	is	my	second	Python	message!

To	run	a	particular	block	of	code,	highlight	those	lines	of	code	and	press	F9.

Understanding	Coding	in	Python
Before	we	get	into	the	coding	concepts	of	Python,	you	need	to	understand	a	few

general	things.	This	section	introduces	Python	syntax	and	basic	mathematical
operations.

Python	Syntax
First,	Python	is	case-sensitive.	You	should	take	great	care	when	it	comes	to
uppercase	and	lowercase	letters.	The	variables	X	and	Y	are	different	from	the
variables	x	and	y.	The	strings	"Hello"	and	"hello"	are	also	different	from	each
other.

Second,	indentations	are	significant	in	Python.	Nonprinting	characters	like
tabs	must	be	consistently	applied	throughout	a	script.	If	you	have	experience
with	another	programming	language,	like	C	or	Java,	you	may	notice	the	lack	of
brackets	and	semicolons	in	Python;	this	is	by	design.	Blocks	of	code	are	defined
by	indentation.	An	unintended	space	in	the	code	will	likely	betray	your
intentions,	as	we’ll	see	in	Chapter	2	when	we	discuss	indentations	in	conditional
executions,	loops,	and	functions.

Third,	Python	uses	single	quotation	marks	and	double	quotation	marks
(mostly)	interchangeably.	For	example,	placing	a	sequence	of	characters	inside
single	quotes	has	the	same	effect	as	if	we	put	them	in	double	quotes	(unless	one
of	the	characters	is	an	escape	character	or	a	single	quote).

Fourth,	Python	lets	you	make	notes,	known	as	comments.	One	popular	way	to
write	a	comment	uses	the	hash	mark	(#).	Everything	in	the	same	line	after	#	will
not	be	executed.	It’s	good	practice	to	make	notes	in	your	scripts	so	others	can
more	easily	understand	what	the	code	is	doing—and	to	remind	yourself	of	the
decisions	you’ve	made	when	you	revisit	the	code	after	a	few	weeks	or	a	few
months.	For	example,	in	the	very	first	line	in	my_first_script.py,	we	have	this:

#	-*-	coding:	utf-8	-*-

Since	this	line	starts	with	#,	Python	ignores	it,	understanding	that	it’s	a
comment	and	not	code	to	execute.

When	you	have	a	comment	that	can’t	fit	on	one	line,	you	can	place	the
comment	in	triple	quotation	marks	("""),	and	everything	between	the	first	set	of
quotes	and	the	last	set	will	not	be	executed	by	the	Python	script.	For	example,	in
lines	2	to	6	in	my_first_script.py,	we	have	this:

"""

Created	on	Fri	Apr	16	14:49:19	2021

@author:	hlliu2

"""

All	those	lines	are	ignored	by	Python.

Basic	Operations	in	Python
Python	is	capable	of	basic	math	operations.	For	example,	to	calculate	7
multiplied	by	123,	you	enter	the	following	in	the	Spyder	editor:

print(7*123)

Place	your	cursor	in	this	line,	press	F9,	and	you	will	get	an	output	of	861.

Table	1-1	provides	the	other	basic	math	operations	in	Python.

Table	1-1:	Basic	Math	Operators

Operators Action

+ Addition:	print(5+6)	will	give	you	a	result	of	11.

- Subtraction:	print(9-4)	will	give	you	a	result	of	5.

/ Division:	print(9/3)	will	give	you	a	result	of	3.

** Exponent:	print(5**3)	will	give	you	a	result	of	125.

% Remainder:	print(13%5)	will	give	you	a	result	of	3	because	13	=	5	×	2	+	3.

// Integer	quotient:	print(13//5)	will	give	you	a	result	of	2	because	13	=	5	×	2	+	3.

These	operations	have	precedence,	meaning	they	will	execute	in	a	particular
order.	That	order	of	operations	is	as	follows:	operations	within	parentheses	have
highest	priority,	followed	by	exponents,	then	multiplication	and	division,	which
have	the	same	priority	and	are	executed	from	left	to	right.	Addition	and
subtraction	have	the	least	priority	and	are	treated	equally,	so	whichever	comes
first	is	executed	first.

For	more	complicated	mathematical	operations,	such	as	cosine	in
trigonometry	or	the	natural	logarithm,	we	need	to	import	modules,	which	I’ll
cover	in	Chapter	2.

Summary

In	this	chapter,	you	learned	how	to	install	Python	and	Spyder	via	Anaconda.	You
also	learned	to	run	Python	scripts	by	using	Spyder.

In	Chapter	2,	we’ll	discuss	the	Python	skills	that	you	need	for	the	rest	of	the
book.	You’ll	learn	the	four	main	value	types	and	how	to	convert	one	type	to
another.	We’ll	look	at	conditional	execution	and	loops	as	well	as	how	functions
and	modules	work	in	Python,	allowing	you	to	accomplish	more-complicated
tasks.

End-of-Chapter	Exercises
1.	 Add	a	line	of	code	to	my_first_script.py	so	that	it	prints	out	a	third	message

that	says	Here	is	a	third	message!

2.	 What	is	the	output	from	each	of	the	following	Python	statements?	First	write
down	the	answers	and	then	run	the	commands	in	Spyder	to	verify.

print(2)

print(3**2)

print(7//3)

print(7/3)

print(7%3)

print(2+2)

print(10*2)

3.	 What	is	the	command	line	in	the	Spyder	editor	if	you	want	to	find	the	result
of	55	multiplied	by	234?

2
PYTHON	REFRESHER

This	chapter	is	a	refresher	on	basic	Python.
The	purpose	of	this	chapter	is	not	to
comprehensively	review	all	the	basic

commands	in	Python.	Instead,	I’ll	provide	you	with	the
Python	skills	that	are	most	important	to	the	rest	of	the
book.
Specifically,	you’ll	learn	the	four	Python	variable	types	(strings,	integers,

floats,	and	Booleans)	and	how	to	convert	one	type	to	another.	Functions	are
useful	tools	in	programming	languages,	and	you’ll	learn	to	use	built-in	functions
in	Python	and	to	import	modules	in	the	Python	Standard	Library.

You’ll	also	learn	how	functions	work	and	how	to	define	your	own	functions.
Many	modules	we	use	in	this	book	are	not	in	the	Python	Standard	Library,	and
you’ll	learn	different	ways	of	installing	these	modules	on	your	computer.

We’ll	discuss	how	modules	work	and	how	to	create	your	own	self-made
modules.	You’ll	then	learn	about	a	virtual	environment,	why	it’s	useful,	and	how
to	create	and	activate	one.

Python	uses	strings,	lists,	dictionaries,	and	tuples	as	collections	of	elements	to
accomplish	complicated	tasks.	In	this	chapter,	you’ll	learn	these	four	types	of
collections,	one	by	one.	You’ll	also	see	examples	of	their	uses.

Before	you	begin,	set	up	the	folder	/mpt/ch02/	for	this	chapter.	As	in	Chapter
1,	all	scripts	in	this	chapter	are	available	at	the	book’s	resources	page,
https://www.nostarch.com/make-python-talk/.

https://www.nostarch.com/make-python-talk/

NEW	SKILLS

Understanding	different	types	of	variables	and	converting	one	type	to	another

Using	Python	built-in	functions	and	importing	modules	to	a	script

Learning	various	ways	of	installing	third-party	modules

Creating	your	own	functions	and	modules

Creating	and	activating	a	virtual	environment

Using	strings,	lists,	dictionaries,	and	tuples	to	accomplish	complicated	tasks

Variables	and	Values
A	variable	is	a	reserved	memory	location	to	store	values	in	Python	(and	in	other
programming	languages).	We	can	assign	values	to	variables	and	use	the	variable
name	to	recall	the	associated	value.	Python	has	four	types	of	values:	strings,
floats,	integers,	and	Booleans.

Strings
A	string	is	a	sequence	of	characters	inside	quotation	marks,	often	used	to
represent	text.	Here	are	some	examples	of	strings:

Name1	=	'University	of	Kentucky	'

Name2	=	"Gatton	College	2021"

You	can	find	out	the	type	that	a	variable	contains	by	using	the	type()
function.	Enter	the	following	in	the	Spyder	editor:

print(type(Name1))

print(type(Name2))

After	execution,	you’ll	see	the	following	output:

<class	'str'>

<class	'str'>

This	means	both	variables	have	string	values.	You	can	add	or	multiply	strings,
but	not	in	the	traditional	mathematical	sense;	instead,	you	can	join	strings	or

repeat	them.	For	example,	say	you	run	the	following	two	lines	of	code	in	the
Spyder	editor:

print(Name1+Name2)

print(Name1*3)

You	will	see	the	following	output:

University	of	Kentucky	Gatton	College	2021

University	of	Kentucky	University	of	Kentucky	University	of	

Kentucky

The	plus	sign	joins	two	strings	together,	while	multiplying	a	string	by	3	means
to	repeat	the	characters	in	the	string	three	times.	Note	that	I’ve	deliberately	left
an	empty	space	at	the	end	of	the	string	University	of	Kentucky,	so	that	when
they	join	together,	there	is	a	space	between	the	strings.

Floats
Floating-point	numbers,	also	known	as	just	floats,	are	a	number	type	that’s
equivalent	to	decimal	numbers	in	mathematics.	Here	are	two	examples	of	floats:

x	=	-17.8912

y	=	0.987

You	can	use	the	round()	function	to	restrict	a	float	to	a	certain	number	of
digits	after	the	decimal	point.	Floats	can	be	positive,	negative,	or	zero.	Run	the
following	code:

print(type(x))

print(type(y))

print(round(x,3))

print(round(y,1))

You	will	have	the	following	output:

<class	'float'>

<class	'float'>

-17.891

1.0

Floats	are	used	to	perform	calculations.

Integers
Integers	are	another	number	type;	they	can’t	have	decimal	places	and	so	must	be
whole	numbers.	Integers	are	used	mainly	for	indexing	purposes	in	Python.
Integers	can	be	positive,	negative,	or	zero.	Here	are	some	examples	of	integers:

a	=	7

b	=	-23

c	=	0

It	is	important	to	know	that	floats	always	have	decimals,	while	integers	do
not.	You	never	need	to	tell	Python	what	type	you	want	to	use;	instead,	it	can	tell
by	the	information	you	give	it.	Python	knows	you’re	using	an	integer	if	you
enter	a	number	without	any	quote	marks	and	without	decimal	places.	Even	if	you
round	a	float	number	to	zero	digits	after	a	decimal,	you	would	still	get	a	decimal
point	and	a	0	trailing	the	number.	Run	the	following	code:

print(type(a))

print(type(b))

print(type(c))

print(round(7.346,1))

print(round(7.346,0))	

You	will	have	the	following	output:

<class	'int'>

<class	'int'>

<class	'int'>

7.3

7.0

The	output	shows	that	all	three	variables,	a,	b,	and	c,	are	integers.	You	will	not
get	an	output	of	7	from	print(round(7.346,0)),	because	using	the	decimal	is
Python’s	way	of	telling	an	integer	apart	from	a	float.

Bools
Booleans,	or	bools,	are	binary	variables	that	can	take	only	the	value	of	True	or
False.	Note	that	the	first	letter	in	True	or	False	must	always	be	uppercase.	We

use	bools	to	find	out	truths	about	our	code	and	make	logical	statements.	As	an
example,	run	these	two	lines	of	code	that	compare	two	numbers:

print(4	>	5)

print(10	>=	6)

You	will	get	the	following	output:

False

True

The	results	show	that	the	logic	statement	4	>	5	is	False,	while	the	logic
statement	10	>=	6	is	True.	The	values	True	or	False	(without	quotes)	are	not
strings	but	are	special	values	reserved	by	Python.	Try	the	following	commands:

print('4	>	5')

print(type(4	>	5))

print(type('4	>	5'))

Here’s	the	output:

4	>	5

<class	'bool'>

<class	'str'>

As	you	can	see,	once	you	put	4	>	5	inside	quotation	marks,	it	becomes	a
string	variable	instead	of	a	bool.

Bools	can	also	be	represented	with	1	(or,	in	reality,	anything	that’s	nonzero)
for	True	and	0	for	False.	Run	this	code:

print(int(True))

print(int(False))

print(float(True))

print(str(False))

It	outputs	the	following:

1

0

1.0

'False'

The	bool()	function	converts	any	nonzero	value	to	True	and	0	to	False.	Run
the	following:

print(bool(1))

print(bool(-2))

print(bool(0))

print(bool('hello'))

And	you	will	get	this:

True

True

False	

True

Convert	Variable	Types
You	can	convert	the	type	of	a	variable	by	using	the	functions	str(),	int(),
bool(),	and	float(),	but	only	if	the	type	you’re	trying	to	convert	is	compatible
with	the	resulting	type.	For	example,	you	can	convert	the	string	variable	"17"	to
an	integer	or	a	float	by	using	int("17")	or	float("17"),	because	17	is	a	number
that	can	be	recognized	as	an	integer	or	float.	However,	you	cannot	convert	the
string	"Kentucky"	to	either	an	integer	or	a	float.

Consider	the	following	lines	of	code:

print(int(17.0))

print(int("88"))	

print(int("3.45"))

print(str(17.0))

print(float(-4))

The	output	is	the	following:

17

88

ValueError:	invalid	literal	for	int()	with	base	10:	'3.45'

'17.0'

-4.0

Bool	values	True	and	False	can	be	converted	to	integers	1	and	0,	respectively,
because	1	and	0	are	often	used	to	represent	True	and	False.	While	the	float

number	17.0	and	string	variable	"88"	can	be	converted	to	integers,	the	string
variable	"3.45"	can’t	be	converted	to	an	integer	because	it	has	values	after	the
decimal	point.

You	can	convert	almost	anything	into	a	string	variable;	for	example,	the	float
number	17.0	can	be	converted	to	the	string	variable	"17.0".	You	can	also
convert	any	integer	to	a	float:	for	example,	the	integer	–4	can	be	converted	to	the
float	–4.0.

Rules	for	Variable	Names
Certain	rules	exist	for	naming	variables,	and	not	everything	can	be	used	as	a
variable	name.	A	variable	name	must	start	with	a	letter	(either	uppercase	or
lowercase)	or	an	underscore	(_).	For	example,	you	can’t	use	8python	as	a
variable	name	because	it	starts	with	a	number.

The	only	special	character	a	variable	name	can	have	is	the	underscore,	so
special	characters	such	as	@	or	&	are	not	allowed.	See	the	Python	naming
conventions	at	https://www.python.org/dev/peps/pep-0008/#id34/.

Variable	names	can’t	be	Python	keywords	or	Python	built-in	functions.	To	get
the	list	of	all	keywords,	run	these	two	lines	of	code	in	the	Spyder	editor:

from	keyword	import	kwlist

print(kwlist)

The	output	is	a	full	list	of	Python	keywords:

['False',	'None',	'True',	'and',	'as',	'assert',	'async',	

'await',	'break',

'class',	'continue',	'def',	'del',	'elif',	'else',	'except',	

'finally',	

'for',	'from',	'global',	'if',	'import',	'in',	'is',	'lambda',	

'nonlocal',	

'not',	'or',	'pass',	'raise',	'return',	'try',	'while',	'with',	

'yield']

Variable	names	can,	however,	contain	keywords.	For	example,	first_break
and	class1	are	valid	variable	names,	even	though	break	and	class	are	not.

Variable	names	should	not	be	Python	built-in	functions.	Figure	2-1	lists	those
functions,	which	are	found	in	the	Python	documentation	at
https://docs.python.org/3/library/functions.html.	You	would	do	well	to

https://www.python.org/dev/peps/pep-0008/#id34/
https://docs.python.org/3/library/functions.html

familiarize	yourself	with	the	list	and	avoid	using	these	terms	as	variable	names.

NOTE

More	information	about	Python	built-in	functions	and	their	definitions
can	be	found	in	the	Python	documentation.

Figure	2-1:	List	of	Python	built-in	functions

Loops	and	Conditional	Execution
Loops	and	conditional	statements	let	you	make	decisions	in	your	code,	so	that
certain	code	will	run	if	a	particular	thing	happens.

Conditional	Execution
The	if	statement	allows	your	code	to	take	particular	actions	based	on	whether	a
condition	is	met.	Consider	the	following	lines	of	code:

x	=	5

if	x	>	0:

				print('x	is	positive')

else:	

				print('x	is	nonpositive')

Here,	x	>	0	is	the	condition.	If	the	value	of	x	is	larger	than	0,	the	condition	is
met,	and	the	script	prints	the	message	x	is	positive.	Conditionals	in	Python
always	need	a	colon	(:)	after	the	conditional	statement.	If	the	condition	is	not
met,	the	script	moves	to	the	else	branch	and	prints	x	is	nonpositive.

We	can	also	have	more	than	two	conditions	by	using	the	elif	keyword.
Consider	the	following	code:

x	=	5

if	x	>	0:

				print('x	is	positive')

elif	x	==	0:

				print('x	is	zero')

else:	

				print('x	is	negative')

Python	uses	the	double	equal	sign	(==)	as	a	comparison	operator,	to
distinguish	it	from	value	assignments	when	we	use	a	single	equal	sign	(=).	This
script	has	three	possible	outcomes,	depending	on	which	condition	is	met:	x	is
positive,	x	is	zero,	or	x	is	negative.

If	we	require	more	than	three	conditions,	the	first	condition	must	follow	the	if
statement,	the	last	condition	must	come	after	the	else	statement,	and	all
conditions	between	should	have	the	elif	keyword:

score	=	88

if	score	>=	90:

				print('grade	is	A')

elif	score	>=	80:

				print('grade	is	B')

elif	score	>=	70:

				print('grade	is	C')

elif	score	>=	60:

				print('grade	is	D')

else:

				print('grade	is	F')

The	script	prints	out	the	letter	grade	based	on	the	value	of	the	score:	A	if	the
score	is	greater	or	equal	to	90;	if	not,	B	if	the	score	is	above	80,	and	so	on.

Loops
One	great	advantage	of	computers	is	their	ability	to	repeat	the	same	tasks	many
times	at	a	fast	rate.	This	is	known	as	looping,	or	iterating,	in	programming.
Python	has	two	types	of	loop:	the	while	and	the	for	loop.

The	while	Loop
A	while	loop	is	used	to	execute	a	block	of	code	as	long	as	a	certain	condition	is
met.	Here	we	use	the	while	statement	to	create	a	loop	that	adds	1	to	the	variable
n	every	time	it	loops	until	n	reaches	3.	Then	the	loop	exits,	and	the	script	prints
finished.	Save	this	as	whileloop.py:

n	=	0

while	n	<	3:

				n	=	n+1	

				print(n)

print('finished')

We	first	assign	n	a	value	of	0.	Then,	the	script	starts	the	while	loop	with	the
condition	n	<	3.	As	long	as	the	condition	is	met,	the	loop	keeps	running.	Notice
the	colon,	which	tells	Python	to	expect	the	indented	lines	that	follow	as	part	of
the	loop.	Those	lines	will	execute	every	time	the	loop	runs.	The	last	line,	which
is	not	indented,	runs	only	after	the	loop	exits.

In	the	first	iteration,	the	value	of	n	increases	from	0	to	1,	and	the	updated
value	of	n	is	printed	out.	In	the	second	iteration,	the	value	of	n	increases	to	2,	and
the	updated	value	of	n	is	printed	out.	In	the	third	iteration,	the	value	of	n
increases	to	3,	and	3	is	printed	out.	When	the	script	goes	to	the	fourth	iteration,
the	condition	n	<	3	is	no	longer	met,	and	the	loop	stops.	After	that,	the	last	line
is	executed.	As	a	result,	we	see	the	following	output	from	whileloop.py:

1

2

3

finished

The	while	loop	is	most	useful	when	we	don’t	know	the	number	of	iterations
we	need	beforehand,	even	though	it	can	also	be	used	to	perform	the	same	tasks
as	a	for	loop.	Later	in	this	book,	we	often	use	the	statement	while	True	to
create	an	infinite	loop	that	puts	the	script	in	standby	mode.

The	for	Loop
The	for	loop	is	generally	used	when	you	want	to	execute	a	block	of	code	a	fixed
number	of	times.	The	following	script,	forloop.py,	is	an	example	of	a	for	loop
that	does	the	same	as	the	while	loop	we	just	made,	adding	1	to	the	variable	n
until	n	reaches	3:

for	n	in	range(3):

				n	=	n	+	1	

				print(n)

print('finished')

We	start	by	using	range(),	a	built-in	function	in	Python,	to	produce	a	range	of
values	from	0	to	2	(Python	always	begins	counting	from	0).	The	line	tells	the
script	to	loop	through	the	three	values,	one	value	per	loop,	and	execute	the	next
two	lines	of	code	for	each	value,	adding	1	to	n	per	loop.	When	the	range	has
been	used	up,	the	loop	exits,	and	we	print	finished.

The	code	in	forloop.py	produces	the	same	output	as	whileloop.py.

Loops	in	Loops
You	can	place	a	loop	inside	another	loop.	This	is	known	as	nesting.	Nested	loops
are	useful	when,	for	each	iteration	in	the	outer	loop,	you	need	to	repeat	certain
jobs	for	each	iteration	in	the	inner	loop.	The	example	script	loop_in_loop.py
loops	through	a	list	and	a	tuple,	printing	each	member	of	the	list	with	each
member	of	the	tuple,	one	pair	per	iteration:

for	letter	in	["A",	"B",	"C"]:

				for	num	in	(1,	2):

								print(f"this	is	{letter}{num}")

First,	we	start	the	outer	loop	with	for,	and	then	the	first	indented	line	starts
the	inner	loop.	The	script	takes	the	first	value	in	the	outer	loop,	goes	through	all
iterations	in	the	inner	loop,	and	prints	a	message	at	each	iteration.	It	repeats	the
process	again	with	the	second	value	of	the	outer	loop.	We	need	to	indent	the
content	of	the	inner	loop	twice	so	the	script	knows	which	lines	belong	to	which
loops.	The	final	output	from	loop_in_loop.py	is	shown	here:

this	is	A1

this	is	A2

this	is	B1

this	is	B2

this	is	C1

this	is	C2

Notice	that	we	use	the	f"{}"	string-formatting	approach.	The	string	f"this
is	{letter}{num}"	tells	Python	to	replace	whatever	is	in	the	curly	brackets
with	the	actual	value	of	the	variable	mentioned.

NOTE

Using	f-strings	to	format	strings	works	only	in	Python	versions	3.6	or
newer.	If	you’re	using	an	older	version	of	Python,	use	the	syntax	"this
is	{0}{1}".format(letter,num)	instead.

You	can	nest	loops	pretty	much	indefinitely,	and	the	script	will	iterate	through
all	values	in	the	innermost	loop	for	each	combination	of	values	in	the	medium
and	outer	loops.	However,	nesting	too	many	loops	can	make	your	code	difficult
to	read	and	isn’t	generally	recommended	practice.

Loop	Commands
Loops	have	a	few	commands	that	are	useful	for	controlling	the	way	your	loops
behave—namely,	continue,	break,	and	pass.	These	commands	allow	you	to
make	decisions	within	a	loop	by	using	the	if	statement.

continue
The	continue	command	tells	Python	to	stop	executing	the	rest	of	the	commands
for	the	current	iteration	and	to	go	to	the	next	iteration.	You	use	continue	when
you	want	to	skip	certain	actions	when	certain	conditions	are	met	in	a	loop.	For
example,	the	script	forloop1.py	uses	the	continue	command	to	skip	printing	the
number	2	and	go	to	the	next	iteration:

for	n	in	(1,	2,	3):

				if	n	==	2:

								continue

		1	print(n)

print('finished')

When	the	value	of	n	is	2,	line	1	will	not	be	executed	because	the	continue
command	tells	the	script	to	skip	it	and	go	to	the	next	iteration.	The	output	from
this	script	is	as	follows:

1

3

finished

break
The	break	command	tells	Python	to	break	the	loop	and	skip	all	remaining
iterations.	You	use	break	when	you	want	to	exit	the	loop.	The	example	script
forloop2.py	uses	the	break	command	to	exit	the	for	loop	when	the	number
reaches	value	2:

for	n	in	(1,	2,	3):

				if	n	==	2:

								break

				print(n)

1	print('finished')

When	the	value	of	n	is	2,	the	whole	loop	stops	and	the	script	goes	to	line	1
directly.	The	output	is	therefore	as	follows:

1

finished

Later	in	this	book,	we’ll	frequently	use	the	break	command	to	tell	the	script	to
stop	the	infinite	loop	generated	by	the	statement	while	True.

pass
The	pass	command	tells	Python	to	do	nothing,	and	it	is	used	when	a	command
line	is	needed	but	no	action	needs	to	be	taken.	We	often	use	it	along	with	try
and	except,	and	we’ll	revisit	this	command	later	in	this	book.	The	script
forloop3.py	uses	a	pass	command	to	tell	the	script	to	take	no	action	when	the
value	of	the	number	is	2:

for	n	in	(1,	2,	3):

				if	n	==	2:

								pass

				print(n)

print('finished')

When	the	value	of	n	is	2,	no	action	needs	to	be	taken.	Therefore,	here’s	the
output	from	the	preceding	script:

1

2

3

finished

This	is	the	same	as	the	output	from	forloop.py.

Strings
A	string	is	a	sequence	of	characters	inside	single	or	double	quotation	marks.	The
characters	in	the	string	can	be	letters,	numbers,	whitespace,	or	special	characters.
We’ll	discuss	how	elements	in	a	string	are	indexed,	how	to	slice	them,	and	how
to	join	multiple	strings	together.

String	Indexing
The	characters	in	strings	are	indexed	from	left	to	right,	starting	at	0.	This	is
because	Python	uses	zero-based	indexing,	so	the	first	element	is	always	indexed
as	0	instead	of	1.

You	can	access	characters	in	a	string	by	using	the	square	bracket	operator	and
the	index	of	the	character	you	want:

msg	=	"hello"

print(msg[1])

Since	e	is	the	second	character	in	the	string	"hello",	the	output	is	this:

e	

Python	also	uses	negative	indexing,	which	starts	from	the	end	of	the	string.
The	last	character	in	the	string	can	be	indexed	as	[-1],	the	second-to-last	one	as
[-2],	and	so	on.	This	is	useful	when	you	have	a	long	string	and	want	to	locate
characters	at	the	end	of	it.

To	find	the	third-to-last	character	of	the	string	msg,	you’d	use	this:

print(msg[-3])

Here’s	the	output:

l

String	Slicing
Slicing	a	string	means	taking	out	a	subset	of	characters.	We	again	use	the	square
bracket	operator:

msg	=	"hello"

print(msg[0:3])

This	will	output	the	following:

hel

The	code	msg[a:b]	gives	you	the	substring	from	position	a	to	position	b	in
the	string	msg,	where	the	character	in	position	a	is	included	in	the	substring	but
the	character	in	position	b	is	not.	Therefore,	msg[0:3]	produces	a	substring	of
the	first	three	characters	in	the	string	msg.

NOTE

If	you	omit	the	starting	position	when	slicing	a	string,	the	default
starting	position	is	the	first	character.	If	you	omit	the	ending	position,
the	default	is	the	last	character.	Therefore,	msg[:3]	gives	you	the	same
result	as	msg[0:3],	and	msg[0:]	is	equivalent	to	msg[:]	(both	produce
the	original	string).

String	Methods
I’ll	cover	a	few	common	string	methods	we’ll	use	throughout	this	book.

replace()

The	replace()	method	replaces	certain	characters	or	substrings	in	the	string
with	other	characters.	It	takes	two	arguments:	the	character	you	want	to	replace
and	the	character	to	replace	it	with.	For	example:

inp	=	"University	of	Kentucky"

inp1	=	inp.replace('	','+')

print(inp1)

We	use	replace()	to	replace	all	whitespaces	with	the	plus	sign.	The	output
from	the	preceding	script	is	shown	here:

University+of+Kentucky

This	method	will	be	useful	later	in	the	book,	when	we	deal	with	the	speech
recognition	feature.	We’ll	use	replace()	to	change	the	voice	text	from	the
speech	engine	to	a	suitable	format	for	the	script.

lower()
The	lower()	method	converts	all	uppercase	letters	in	a	string	to	lowercase.	Since
Python	strings	are	case-sensitive,	converting	all	letters	to	lowercase	when
matching	strings	means	we	won’t	miss	uppercase	substrings	that	should	match.

Say	we	want	to	capture	the	spoken	phrase	“department	of	education”	via	a
speech	recognition	module.	We	can’t	be	sure	whether	the	phrase	will	be	captured
as	Department	of	Education	or	not.	You	can	use	lower()	to	convert	the	phrase
to	an	all	lowercase	string	to	avoid	mismatches,	like	so:

inp	=	"Department	of	Education"

inp1	=	"department	of	education"

print(inp.lower()	==	inp1.lower())

The	script	tests	whether	the	two	strings	inp	and	inp1	are	the	same	when	we
ignore	case-sensitivity.	Here’s	the	output:

True

find()
You	can	use	find()	to	locate	the	position	of	a	character	in	a	string.	The	method
returns	the	index	of	the	character	in	the	string.

Enter	the	following	lines	of	code	into	the	Spyder	editor	and	save	it	as
extract_last_name.py;	then	run	it:

email	=	"John.Smith@uky.edu"

pos1	=	email.find(".")

print(pos1)

pos2	=	email.find("@")

print(pos2)

last_name	=	email[(1+pos1):pos2]

print(last_name)

The	string	variable	email	has	a	pattern:	it	consists	of	the	first	name,	the	dot,
and	the	last	name,	followed	by	@uky.edu.	We	use	this	pattern	to	locate	the
positions	of	the	dot	and	the	at	sign,	then	retrieve	the	last	name	based	on	those
two	positions.

First,	we	get	the	position	of	.	and	define	it	as	a	variable	pos1.	Then,	we	find
the	position	of	@	and	define	it	as	pos2.	Finally,	we	slice	the	string	and	take	the
characters	between	the	two	positions,	returning	the	substring	as	the	variable
last_name.

Running	the	script	should	produce	this:

4	

10	

Smith

The	indexes	of	.	and	@	in	the	email	are	4	and	10,	respectively,	and	the	last
name	is	Smith.

You	can	also	use	the	string	method	find()	to	locate	a	substring.	The	method
returns	the	starting	position	of	the	substring	in	the	original	string.	For	example,	if
you	run	the	following	lines	of	code

email	=	"John.Smith@uky.edu"

pos	=	email.find("uky.edu")

print(pos)

you’ll	get	the	following	output:

11	

The	output	says	that	the	substring	uky.edu	starts	with	the	12th	character	in	the

email.

NOTE

If	a	character	or	a	substring	is	not	in	a	string,	the	output	is	-1	instead	of
an	error	message.	For	example,	email.find("$")	will	give	you	an
output	of	-1.	We	will	use	this	feature	later	in	this	book	to	identify	cases
where	something	is	not	in	a	string.

split()
The	split()	method	splits	a	string	into	multiple	strings,	using	the	specified
separator.	Enter	the	following	code	in	Spyder	and	run	it:

msg	=	"Please	think	of	an	integer"

words	=	msg.split()

print(words)

The	output	is	as	follows:

['Please',	'think',	'of',	'an',	'integer']

The	default	delimiter	(a	fancy	name	for	separator)	is	a	whitespace	('	').	You
can	also	specify	the	delimiter	when	you	use	split().	Let’s	revisit	the	example
of	extracting	the	last	name	from	an	email	address,	naming	the	new	script
split_string.py,	as	in	Listing	2-1.

email	=	"John.Smith@uky.edu"

(name,	domain)	=	email.split('@')

(first,	last)	=	name.split('.')

print(f"last	name	is	{last}")

Listing	2-1:	Using	a	delimiter	to	split	up	an	email	address

We	first	split	the	email	into	two	parts	by	using	@	as	the	delimiter	and	assign
the	name	and	domain	to	a	tuple.	(We’ll	discuss	the	definition	of	a	tuple	later	in
this	chapter.)	As	a	result,	the	first	element	in	the	tuple,	the	variable	name,	is	a
substring:	John.Smith.	The	script	then	splits	John.Smith	into	the	first	name	and
the	last	name,	using	.	as	the	delimiter,	and	saves	them	in	the	tuple	(first,
last).	Finally,	we	print	out	the	second	element	in	the	tuple	as	the	last	name.

The	output	is	shown	here:

last	name	is	Smith

join()
The	join()	method	joins	several	strings	into	one,	as	in	this	script,
join_string.py:

mylink	=	('&')

strlist	=	['University',	'of',	'Kentucky']

joined_string	=	mylink.join(strlist)

print(joined_string)

We	define	&	as	the	variable	mylink,	to	be	used	as	our	separator.	The	strlist
is	a	list	of	the	three	words	that	we	want	to	join	together.	We	use	join()	to
combine	the	three	words	into	one	single	string.	Note	that	you	need	to	put	join()
after	the	separator.	Finally,	we	print	out	the	joined	string:

University&of&Kentucky

Lists
A	list	is	a	collection	of	values	separated	by	commas.	The	values	in	a	list	are
called	elements,	or	items,	and	they	can	be	values,	variables,	or	other	lists.

Create	a	List
To	create	a	new	list,	you	simply	put	the	elements	in	square	brackets:

lst	=	[1,	"a",	"hello"]

We	define	the	list	lst	with	three	elements:	an	integer	number	1	and	two
strings.	Note	that	list()	is	a	built-in	function	in	Python,	so	you	cannot	use	list
as	a	variable	name	or	list	name.	I	suggest	that	you	use	a	descriptive	name	to	help
future	readers	understand	the	code.

You	create	an	empty	list	by	using	a	pair	of	square	brackets	with	nothing	in	it:

lst1	=	[]

Or	you	can	use	the	list()	function:

lst2	=	list()

Access	Elements	in	a	List
You	can	access	the	elements	of	a	list	by	using	the	bracket	operator:

lst	=	[1,	"a",	"hello"]

print(lst[2])

This	will	produce	the	following:

hello

Here,	lst[2]	refers	to	the	third	element	in	the	list,	because	Python	is	like	most
computer	programming	languages,	which	start	counting	at	zero.

You	can	traverse	the	elements	of	a	list	by	using	a	loop:

for	x	in	range(len(lst)):

				print(lst[x])

This	give	us	the	following:

1

a

hello

We	use	the	built-in	function	len()	to	return	the	length	of	the	list,	which	is	3	in
this	case.	The	built-in	function	range()	returns	values	0,	1,	and	2	here.

Use	a	List	of	Lists
A	list	can	use	lists	as	its	elements.	This	is	useful	for	mapping	element	positions
to	coordinates	in	a	two-dimensional	space.	Here	is	one	example:

llst	=	[[1,2,3,5],

										[2,2,6,8],

										[2,3,5,9],

										[3,5,4,7],

										[1,3,5,0]]

print('the	value	of	llst[1][2]	is	',	llst[1][2])

print('the	value	of	llst[3][2]	is	',	llst[3][2])

print('the	value	of	llst[1][3]	is	',	llst[1][3])

Here’s	the	output:

the	value	of	llst[1][2]	is		6

the	value	of	llst[3][2]	is		4

the	value	of	llst[1][3]	is		8

The	list	llst	itself	contains	five	lists.	To	find	the	value	of	llst[1][2],	the
code	first	looks	at	the	second	item	in	the	outer	list	llst,	which	is	the	list	[2,	2,
6,	8].	The	third	element	of	that	list	is	6;	hence	llst[1][2]	=	6.

Now	let’s	draw	a	corresponding	picture	in	a	two-dimensional	space,	as	in
Figure	2-2.

Figure	2-2:	Map	a	list	of	lists	to	a	two-dimensional	space

We’ll	use	this	in	Part	III	to	create	boards	for	our	interactive	games.

Add	or	Multiply	Lists
You	can	use	the	plus	(+)	and	multiplication	(*)	operators	on	lists,	but	not	in	the
mathematical	sense.	For	example,	run	the	following	lines	of	code:

lst	=	[1,	"a",	"hello"]

print(lst	+	lst)

print(lst	*	3)

You	should	see	the	following	output:

[1,	"a",	"hello",	1,	"a",	"hello"]

[1,	"a",	"hello",	1,	"a",	"hello",	1,	"a",	"hello"]

The	plus	operator	joins	two	lists	into	a	larger	list.	The	multiplication	operator
repeats	the	elements	in	the	list.	If	you	multiply	a	list	by	3,	the	elements	will
appear	three	times.

List	Methods
I’ll	introduce	several	useful	list	methods	here	that	we’ll	use	in	later	chapters	of
this	book.

enumerate()
The	enumerate()	method	prints	out	all	elements	in	a	list	with	their
corresponding	indexes.	Assume	we	have	the	following	list	names:

names	=	['Adam','Kate','Peter']

The	following	lines	of	code

for	x,	name	in	enumerate(names):

				print(x,	name)

will	generate	this	output:

0	Adam

1	Kate

2	Peter

The	first	element	at	index	0	is	Adam,	the	second	at	index	1	is	Kate,	and	so	on.

You	can	choose	the	start	value	to	be	1	instead	of	0	with	start=1,	like	so:

names	=	['Adam','Kate','Peter']

for	x,	name	in	enumerate(names,	start=1):	

				print(x,	name)

The	output	is	as	follows:

1	Adam

2	Kate

3	Peter

append()
You	can	append	an	element	to	the	end	of	a	list	by	using	the	append()	method.
Consider	this	script,	list_append.py:

lst	=	[1,	"a",	"hello"]

1	lst.append(2)	

print(lst)

This	code	is	appending	the	element	2	to	the	existing	list	lst,	producing	this:

[1,	"a",	"hello",	2]

The	new	lst	now	has	four	elements.

You	can	append	only	one	element	at	a	time,	and	it	is	added	to	the	end	of	the
list	by	default.	Appending	two	elements	will	lead	to	an	error	message.	Change
line	1	in	the	script	list_append.py	to	the	following:

lst.append(2,	3)	

You’ll	get	the	following	error	message:

TypeError:	append()	takes	exactly	one	argument	(2	given)

However,	you	can	append	multiple	elements	as	a	list.	Add	square	brackets
around	the	two	numbers	as	follows:

lst.append([2,	3])	

You’ll	get	the	following	output:

[1,	"a",	"hello",	[2,	3]]

The	new	list	has	four	elements.

To	add	two	or	more	elements	to	the	existing	list,	you	should	use	the	plus
operator.	For	example,	to	add	2	and	3	as	two	separate	elements	to	the	list,	you
can	use	the	following	line	of	code:

lst	+	[2,	3]	

The	output	will	be	as	follows:

[1,	a,	"hello",	2,	3]

remove()
You	can	remove	an	element	from	a	list	by	using	remove():

lst	=	[1,	"a",	"hello",	2]

lst.remove("a")	

print(lst)

We	remove	the	element	that	was	at	index	1,	resulting	in	this:

[1,	"hello",	2]

The	new	list	no	longer	has	element	a.	You	can	remove	only	one	element	at	a
time.

index()
You	can	find	the	position	of	an	element	in	a	list	by	using	the	index()	method:

lst	=	[1,	"a",	"hello",	2]

print(lst.index("a"))

From	this	we	get	the	following:

1

The	result	tells	you	that	the	element	a	has	an	index	of	1	in	the	list.

count()
You	can	count	how	many	times	an	element	appears	in	a	list	by	using	count():

lst	=	[1,	"a",	"hello",	2,	1]

print(lst.count(1))	

print(lst.count("a"))	

This	produces	the	following:

2

1

This	tells	us	that	the	element	1	has	appeared	in	the	list	twice,	while	the
element	a	has	appeared	once.

sort()
You	can	sort	the	elements	in	a	list	by	using	sort().	The	elements	must	be	the
same	type	(or	at	least	convertible	to	the	same	type).	For	example,	if	you	have
both	integers	and	strings	in	a	list,	trying	to	sort	the	list	will	lead	to	the	following
error	message:

TypeError:	'<'	not	supported	between	instances	of	'str'	and	'int'

Numbers	are	sorted	from	the	smallest	to	the	largest.	Adding	reverse=True
inside	the	method	as	an	option	will	reverse	the	ordering.	Here’s	an	example:

lst	=	[5,	47,	12,	9,	4,	-1]

lst.sort()

print(lst)

lst.sort(reverse=True)

print(lst)

This	will	output	the	following:

[-1,	4,	5,	9,	12,	47]

[47,	12,	9,	5,	4,	-1]

Letters	are	sorted	in	alphabetic	order,	and	they	come	after	numbers.	Consider
this	example:

Lst	=	['a',	'hello',	'ba',	'ahello',	'2',	'-1']

lst.sort()

print(lst)

The	output	is	shown	here:

['-1',	'2',	'a',	'ahello',	'ba',	'hello']

Use	Built-in	Functions	with	Lists
We	can	use	several	Python	built-in	functions	on	lists	directly,	including	min(),
max(),	sum(),	and	len().	These	produce	the	minimum	value,	the	maximum
value,	the	total	sum,	and	the	length	of	the	list,	respectively,	like	so:

lst	=	[5,	47,	12,	9,	4,	-1]

print("the	range	of	the	numbers	is",	max(lst)-min(lst))

print("the	mean	of	the	numbers	is",	sum(lst)/len(lst))

Here’s	the	output:

the	range	of	the	numbers	is	48

the	mean	of	the	numbers	is	12.666666666666666

list()
You	can	use	the	list()	function	to	convert	a	string	to	a	list	of	characters:

msg	=	"hello"

letters	=	list(msg)

print(letters)

The	output	is	as	follows:

['h',	'e',	'l',	'l',	'o']

Interestingly	enough,	Python	strings	can	be	treated	just	like	lists	of	characters.

Dictionaries
A	dictionary	is	a	collection	of	key-value	pairs.	We	create	a	dictionary	by	placing
the	elements	inside	curly	brackets,	as	shown	in	Listing	2-2.

scores	=	{'blue':10,	'white':12}

Listing	2-2:	Creating	a	dictionary	with	two	key-value	pairs

The	dictionary	scores	has	two	key-value	elements,	separated	by	a	comma:	the
first	element	is	the	key	blue	and	the	value	10,	denoted	by	their	position	and
separated	by	a	colon.	The	second	element	is	'white':12.

To	create	an	empty	dictionary,	you	use	dict()	or	a	pair	of	curly	brackets	with
nothing	within	them:

Dict1	=	dict()

Dict2	=	{}

You	can	add	a	new	element	to	the	existing	dictionary	as	follows:

Dict3	=	{}

Dict3['yellow']	=	6

print(Dict3)

The	line	Dict3['yellow']	=	6	assigns	a	value	of	6	to	the	key	yellow.	The
new	Dict3	contains	the	element	6,	which	is	accessible	by	the	key	yellow.

Access	Values	in	a	Dictionary
You	access	values	in	a	dictionary	by	using	the	bracket	operator.	The	key	value	in
each	pair	acts	as	the	index.	For	example,	we	can	access	the	values	in	scores,
built	in	Listing	2-2,	as	follows:

print(scores['blue'])

print(scores['white'])	

This	will	give	you	the	following	results:

10

12	

We	can	also	use	the	get()	method.	The	advantage	of	using	get()	is	that	it
uses	None	as	a	default	value	when	a	user	requests	a	key	that	isn’t	in	the
dictionary,	rather	than	returning	an	error.	Consider	the	following	script,
get_score.py:

scores	=	{'blue':10,	'white':12}

print(scores['blue'])

print(scores['white'])

print(scores.get('yellow'))

print(scores.get('yellow',0))

This	produces	the	following:

10

12

None

0

Since	the	key	yellow	is	not	in	scores,	the	method	get('yellow')	returns	a
value	of	None.	Further,	when	you	put	the	option	0	in	the	method,	get('yellow',
0)	returns	a	value	of	0.

Use	Dictionary	Methods
You	can	use	the	keys()	method	to	produce	a	list	of	all	keys	in	a	dictionary:

scores	=	{'blue':10,	'white':12}

teams	=	list(scores.keys())

print(teams)	

This	gives	us	the	following:

['blue',	'white']

We	can	use	values()	to	produce	a	list	of	all	values	in	a	dictionary:

points	=	list(scores.values())

print(points)

The	output	is	shown	here:

[10,	12]

We	can	use	items()	to	get	the	list	of	each	key-value	pair	as	a	tuple	(see
“Tuples”	on	page	37).

print(list(scores.items()))

This	produces	the	following	result:

[('blue',	10),	('white',	12)]

How	to	Use	Dictionaries
The	values	in	a	dictionary	can	be	any	type	of	variable,	a	list,	or	even	another
dictionary.	Here	we	have	a	dictionary	that	uses	lists	as	values:

scores2	=	{'blue':[5,	5,	10],	'white':[5,	7,	12]}

The	value	for	each	key	is	a	three-element	list.	The	three	values	represent	the
scores	each	player	got	in	the	first	half	and	second	half	of	the	game	and	the	total
score,	respectively.	To	find	out	how	many	points	the	white	team	got	in	the
second	half,	you	can	call	this:

print(scores2['white'][1])

The	advantage	of	a	dictionary	is	that	its	key	can	be	any	value,	not	necessarily
an	integer.	This	makes	dictionaries	useful	in	many	situations.	For	example,
most_freq_word.py	uses	a	dictionary	to	count	words:

news	=	(

'''Python	is	an	interpreted,	high-level,	and	general-purpose	

programming

	language.	Python's	design	philosophy	emphasizes	code	readability	

with

	its	notable	use	of	significant	whitespace.	

	Its	language	constructs	and	object-oriented	approach	aim	to	help		

	programmers	write	clear,	logical	code	for	small-	and	large-scale		

	projects.

''')

wdcnt	=	dict()

wd	=	news.split()

for	w	in	wd:

				wdcnt[w]	=	wdcnt.get(w,	0)	+	1

print(wdcnt)			

for	w	in	list(wdcnt.keys()):

				if	wdcnt[w]	==	max(list(wdcnt.values())):

								print(w)

We	define	news	as	a	string	variable	with	a	short	paragraph.	We	then	create	an
empty	dictionary	wdcnt.	Next,	we	split	the	string	into	a	list	of	separate	words.
We	then	count	the	frequency	of	each	word	and	store	the	information	in	the
dictionary,	with	the	word	as	the	key	and	the	word	count	as	the	value.	Because	we
use	get(),	if	a	word	is	not	already	in	the	dictionary	as	a	key,	the	second
argument	in	get()	assigns	a	value	of	0	to	the	word.

Finally,	we	print	out	the	words	that	have	the	highest	frequency.	The	result	is	as
follows:

{'Python':	1,	'is':	1,	'an':	1,	'interpreted,':	1,	'high-level':	

1,	'and':	3,

	'general-purpose':	1,	'programming':	1,	'language.':	1,	

"Python's":	1,

	'design':	1,	'philosophy':	1,	'emphasizes':	1,	'code':	2,	

'readability':	1,

	'with':	1,	'its':	1,	'notable':	1,	'use':	1,	'of':	1,	

'significant':	1,	

'whitespace.':	1,	'Its':	1,	'language':	1,	'constructs':	1,	

'object-oriented':	1,	'approach':	1,	'aim':	1,	'to':	1,	'help':	

1,	

'programmers':	1,	'write':	1,	'clear,':	1,	'logical':	1,	'for':	

1,	

'small-':	1,	'large-scale':	1,	'projects.':	1}

and

It	turns	out	that	the	most	frequent	word	in	the	news	article	is	and,	which	is
used	three	times.

Switch	Keys	and	Values
Sometimes	you’ll	want	to	switch	the	positions	of	keys	and	values.	Now	let’s	take
the	term	dictionary	literally	and	suppose	you	have	the	following	English-to-
Spanish	dictionary	that	uses	the	English	word	as	the	key	and	the	Spanish
translation	as	the	value:

spanish	=	{'one':	'uno',	'two':	'dos',	'three':	'tres'}

You	want	to	create	a	Spanish-to-English	dictionary	instead.	You	can
accomplish	this	by	using	the	following	line	of	code:

english	=	{y:x	for	x,y	in	spanish.items()}

The	command	x,y	in	spanish.items()	retrieves	all	the	key-value	pairs	in
spanish.	The	command	y:x	for	x,y	switches	the	positions	of	the	keys	and
values.	You	must	put	curly	brackets	around	everything	to	the	right	of	the	equal
sign	so	that	the	script	treats	it	as	a	dictionary.	To	verify,	enter	this:

print(english)

You	will	have	the	following	output:

{'uno':	'one',	'dos':	'two',	'tres':	'three'}

Combine	Two	Dictionaries
To	combine	two	dictionaries	x	and	y	into	one	large	dictionary	z,	you	assign	z	=
{**x,	**y}:

spanishenglish	=	{**spanish,	**English}

The	result	is	a	new	dictionary	called	spanishenglish	with	six	elements:	three
pairs	from	spanish	and	three	pairs	from	english.

Tuples
A	tuple	is	a	collection	of	values	separated	by	commas,	similar	to	a	list—with	the
big	difference	that	a	tuple	cannot	be	changed	after	it’s	defined	(that	is,	tuples	are
immutable).	Elements	of	a	tuple	exist	inside	parentheses	instead	of	square
brackets	to	distinguish	the	tuple	from	a	list.	Here	we	make	a	tuple	and	attempt	to
modify	it:

tpl	=	(1,	2,	3,	9,	0)

tpl.append(4)

print(tpl)

We	get	the	following	error	message:

AttributeError:	'tuple'	object	has	no	attribute	'append'

Because	tuples	are	immutable,	we	cannot	use	methods	like	append()	or
remove()	on	them.	We	cannot	sort	the	elements	in	a	tuple	either.

The	elements	of	a	tuple	are	indexed	by	integers,	and	we	can	access	them	by
using	the	bracket	operator:

tpl	=	(1,	2,	3,	9,	0)

print(tpl[3])

print(tpl[1:4])

Our	output	is	shown	here:

9

(2,	3,	9)

We	saw	examples	of	assigning	values	to	a	tuple	in	split_string.py	(Listing	2-
1).

You	can	compare	two	tuples.	This	process	begins	with	comparing	their	first
elements.	If	the	first	elements	are	the	same,	we	check	whether	the	second
elements	match.	If	the	second	elements	are	also	the	same,	we	go	to	the	third
elements,	and	so	on,	until	we	find	a	difference.

Run	the	following	lines	of	code	in	your	Spyder	editor:

lt	=	[(1,	2),	(3,	9),	(0,	7),	(1,	0)]

lt.sort()

print(lt)

And	you’ll	see	this	output:

	[(0,	7),	(1,	0),	(1,	2),	(3,	9)]

Functions
A	function	is	(ideally)	a	block	of	code	designed	to	do	a	task.	There	are	many
functions	that	do	many	things,	but	it	is	commonly	considered	best	practice	to
have	a	function	that	performs	only	one	task	(and	does	not	make	changes	to	other
variables).	Some	functions	have	defined	parameters	(inputs).	We	can	assign	the

function	code	to	a	variable	name	so	we	don’t	have	to	repeat	the	same	code	every
time	we	need	that	task	done.	Instead,	we	just	call	the	function	and	enter	the
inputs.

Functions	also	improve	readability,	making	the	code	more	organized,	less
cluttered,	and	less	error-prone.

Use	Built-in	Python	Functions
Python	comes	with	many	built-in	functions	that	you	can	readily	use,	including
print()	from	Chapter	1.	Here	I’ll	discuss	a	couple	of	built-in	functions	we’ll
use	frequently	in	this	book.

The	range()	Function
The	range()	function	is	used	to	produce	a	list	of	integers.	We	introduced
range()	when	we	discussed	loops	on	page	21.	We	know	that,	for	example,
range(5)	produces	the	values	[0,	1,	2,	3,	4].	The	default	starting	value
generated	by	the	function	range()	is	0,	because	Python	uses	zero	indexing,	but
you	can	also	specify	the	starting	value.	For	example,	range(3,	6)	produces	the
list	of	the	following	three	values:	[3,	4,	5].

The	default	increment	value	is	1,	but	you	can	also	specify	the	increment	as	the
optional	third	argument.	For	example,	the	code

for	x	in	range(-5,	6,	2):

				print(x)

will	give	this	output:

-5

-3

-1

1

3

5

The	third	argument	in	range(-5,	6,	2)	tells	the	script	to	increase	the	value
by	2	for	each	element.

If	the	increment	value	is	a	negative	integer,	the	values	in	the	list	decrease.	For
example,	range(9,	0,	-3)	produces	the	list	[9,	6,	3].

The	input()	Function
Text-to-speech	is	the	process	of	converting	written	text	into	human	voice,	so	it’s
important	to	know	how	Python	takes	written	text	inputs,	using	a	built-in	function
called	input().

Run	the	following	script	in	Spyder:

color	=	input('What	is	your	favorite	color?')

print('I	see,	so	your	favorite	color	is	{}'.format(color))

You	should	see	a	screen	similar	to	Figure	2-3.

Figure	2-3:	A	screenshot	of	what	happens	when	Python	is	asking	for	input

As	you	can	see	in	Figure	2-3,	the	script	asks	for	your	input	in	the	lower-right
IPython	console.	It	waits	for	you	to	type	some	text	and	press	ENTER	before	it
continues	to	run.	If	you	enter	blue,	the	script	will	output	the	following:

What	is	your	favorite	color?	blue

I	see,	so	your	favorite	color	is	blue.

You	can	ask	for	multiple	inputs,	like	so:

FirstName	=	input('What	is	your	first	name?\n')

LastName	=	input('What	is	your	last	name?\n')

print(f'Nice	to	meet	you,	{FirstName	}	{LastName	}.')

The	script	asks	for	two	inputs.	The	sequence	\n	is	an	escape	character,
inserting	a	new	line	below	the	question	“What	is	your	first	name?”

GETTING	HELP

To	find	out	what	a	particular	built-in	function	does,	you	can	use	the	help()	command.	For
example:

help(abs)

produces	the	following	output:

abs(x,	/)

Return	the	absolute	value	of	the	argument.

Define	Your	Own	Functions
In	addition	to	using	built-in	functions,	we	can	build	our	own.	I’ll	show	you	how
to	create	a	function,	and	this	process	will	also	show	you	how	functions	work.
Functions	can	take	one	or	more	inputs,	known	as	arguments,	or	no	input	at	all.

A	Function	with	No	Argument
We’ll	start	by	building	a	function	that	prints	the	message	Finished	printing.
This	function	takes	no	input:

def	TheEnd():

				print('Finished	printing')	

for	i	in	(1,	2,	3):

				print(i)

TheEnd()	

We	use	def	to	signify	a	function	definition,	give	a	function	name,	and	follow
it	with	empty	parentheses	and	a	colon.	The	colon	tells	Python	to	expect	the	body
of	the	function.	All	indented	lines	that	follow	are	considered	part	of	the	function.

The	script	prints	three	numbers,	after	which	we	call	the	function.	The	output	is
as	follows:

1

2

3

Finished	printing

As	you	can	see,	the	command	line	in	the	function	is	executed	only	when	the
function	is	called,	not	when	it	is	defined.

A	Function	with	One	Argument
Now	we’ll	write	a	function	that	takes	one	input.	We	need	to	write	a	thank-you
note	to	50	people.	The	message	is	the	same	except	for	the	recipient’s	name.
We’ll	define	a	function	to	print	the	message,	and	we	need	to	supply	only	the
name	for	each	message	when	we	call	it.	We	first	define	a	function	called	msgs()
as	follows:

def	msgs(name):	

				print(f"Thank	you,	{name},	I	appreciate	your	help!")	

The	name	of	the	function	is	msgs,	with	the	variable	name	as	its	only	input.	If
we	call	the	function	twice	as	follows:

msgs("Mary")

msgs("Bob")

the	output	will	be	this:

Thank	you,	Mary,	I	appreciate	your	help!

Thank	you,	Bob,	I	appreciate	your	help!

To	write	the	50	thank-you	notes,	you	can	call	the	function	50	times:	once	with
each	name.

A	Function	with	Multiple	Arguments
Functions	can	have	two	or	more	arguments	as	inputs.	Consider	the	script
team_sales.py	in	Listing	2-3,	which	defines	a	function	that	needs	three	inputs.

def	team_sales(sales1,	sales2,	sales3):

				sales	=	sales1	+	sales2	+	sales3

				return	sales

print(team_sales(100,	150,	120))

Listing	2-3:	Defining	a	function	with	three	arguments

We	define	a	function	to	calculate	the	total	sales	from	a	team	with	three
members.	The	function	uses	the	sales	from	individual	members,	sales1,	sales2,
and	sales3,	as	the	three	arguments.	We	calculate	the	total	team	sales,	sales,	by
summing	the	three	individual	sales	numbers.	We	then	tell	the	script	the	output	of
the	function	by	using	the	return	command.	As	a	result,	when	the	function
team_sales()	is	called,	you	get	the	sum	of	the	three	sales.

If	the	individual	sales	are	100,	150,	and	120,	when	we	call	the	function
team_sales(),	we’ll	get	an	output	of	370.

A	Function	That	Takes	an	Unknown	Number	of	Arguments
Sometimes	the	number	of	inputs	is	unknown.	For	example,	you	want	to	define	a
function	to	calculate	the	total	sales	made	by	a	group	of	salespeople,	but	different
groups	have	different	numbers	of	salespeople.	You	can	define	a	single	function
for	this	purpose	that	works	regardless	of	the	size	of	the	group	by	using	the
argument	*args,	which	allows	you	to	pass	multiple	values	of	variable	length	to	a
function.	Listing	2-4,	total_sales.py,	accomplishes	the	job.

def	total_sales(*args):

				total	=	0

				for	arg	in	args:

							total	=	total	+	arg

				return	total

--snip--

Listing	2-4:	First	part	of	total_sales.py

We	start	total_sales(),	which	takes	*args	as	the	argument.	We	set	the	value
of	the	variable	total	to	0	and	then	loop	through	each	element	in	the	argument
args.	For	each	element	in	the	argument,	we	add	it	to	the	variable	total.	We
output	the	total	sales	of	the	group.	Test	it	out	with	Listing	2-5.

--snip--

print(total_sales(200,100,100,100))

print(total_sales(800,500,400))

Listing	2-5:	Second	part	of	the	script	total_sales.py

From	this,	we	get	the	following:

500

1700	

As	you	can	see,	the	function	takes	the	one	argument,	*args,	but	you	can	put	as
many	elements	in	the	function	as	you	want.

Modules
You	are	not	limited	to	just	the	Python	built-in	functions.	The	Python	Standard
Library	has	many	modules	that	provide	other	functions	you	can	call	from	your
own	code.

Import	Modules
We’ll	discuss	three	ways	of	using	a	function	from	a	module	and	the	pros	and
cons	of	each	approach.

Import	the	Module
The	first	way	is	to	import	the	entire	module.	For	example,	to	find	the	value	of
the	cosine	of	a	30-degree	angle,	you	can	first	import	the	math	module.	Then	you
can	use	the	cos()	function	from	the	module	by	calling	both	the	module	name
and	the	function	name:	math.cos().

Enter	the	following	code	in	Spyder:

import	math

print(math.cos(30))

You’ll	have	an	output	of	0.15425144988758405.

You	have	to	import	the	module	before	you	call	math.cos().	If	you	don’t
import	math	and	just	run	this	command:

print(math.cos(30))

Python	will	give	you	an	error	message:

NameError:	name	'math'	is	not	defined

Also,	you	must	always	put	the	module	name	in	front	of	the	function	name
when	you	call	the	function.	Enter	the	following	two	lines	of	code	in	Python:

import	math

print(cos(30))

You’ll	get	this	error	message:

NameError:	name	'cos'	is	not	defined

This	is	because	Python	doesn’t	know	where	to	find	the	cos()	function,	even
though	you	have	imported	the	math	module.

Import	the	Functions
If	you	want	only	one	or	two	functions	from	a	certain	module,	you	can	save	time
by	importing	just	those	one	or	two	functions.	This	approach	allows	you	to	use
the	function	name	without	having	to	append	the	module	name.	Enter	the
following	two	lines	of	code:

from	math	import	cos,	log

print(cos(30)+log(100))

You’ll	get	the	correct	output,	4.759421635875676.	We	don’t	need	to	use	math
because	we	told	the	script	where	to	look	for	the	two	functions.	This	is
particularly	useful	if	you	need	to	use	the	function	dozens	or	hundreds	of	times	in
your	script.

Use	Asterisk	Import
If	your	script	relies	heavily	on	many	functions	in	a	module,	you	can	potentially
save	time	by	importing	all	functions	from	the	module	by	using	asterisk	import:
from	module	import	*.	However,	many	in	the	Python	community	have
cautioned	against	this	approach	because	the	import	*	statement	can	pollute	your
namespace,	potentially	interfering	with	functions	you	define	(or	functions	from
other	modules).	We	won’t	use	this	method	in	the	book.

Create	Your	Own	Modules
In	Listing	2-3,	we	defined	team_sales()	in	team_sales.py	and	then	called	the

function.	You	might	need	to	calculate	the	total	sales	in	many	scripts.	You	can	do
so	without	rewriting	the	code	in	each	script	by	building	the	function	into	a
module.

Let’s	first	create	a	script	called	create_local_module.py,	as	shown	in	Listing	2-
6.

def	team_sales(sales1,	sales2,	sales3):

				sales	=	sales1	+	sales2	+	sales3

				return	sales

Listing	2-6:	Code	for	the	local	module

This	script	defines	team_sales()	but	does	not	call	it.	Next,	create	the	new
script	import_local_module.py	in	Listing	2-7	and	save	it	in	the	same	folder	as
create_local_module.py.

from	create_local_module	import	team_sales

print(team_sales(100,	160,	200))

print(team_sales(200,	250,	270))

print(team_sales(150,	120,	200))

Listing	2-7:	Code	to	import	the	local	module

When	you	import	a	module,	Python	first	looks	in	the	directory	the	importing
script	is	stored	in,	so	the	module	must	be	in	the	same	folder.	This	kind	of	module
is	known	as	a	local	module.

If	you	run	the	script,	you’ll	get	the	following	results:

460

720

470

The	team_sales()	function	correctly	calculates	the	total	sales	for	three	teams.

Local	modules	work	the	same	as	modules	in	the	Python	Standard	Library,	but
they	need	to	be	stored	in	the	folder	Python	expects	them	to	be	in.

For	modules	that	you	download,	Python	stores	the	file	path	of	the	downloaded
module	behind	the	scenes	and	follows	that	path	when	you	import	it.	For
example,	the	tkinter	package	is	in	the	Python	Standard	Library	we’ll	use	later	in
this	book.	When	you	install	it,	the	files	are	placed	under	a	specific	path,	which	is

something	like	the	following	on	Windows:

C:\Users\ME\Anaconda3\envs\MYEV\Lib\tkinter

It’s	buried	like	this	so	you	don’t	accidentally	alter	or	misplace	it,	which	would
mean	you	could	no	longer	use	it.

TRY	IT	YOURSELF

Create	a	local	module	based	on	total_sales.py	to	define	the	function	total_sales().	Import
the	module	and	use	the	function	to	calculate	total	sales.

Use	Third-Party	Modules
One	of	the	main	advantages	of	Python	is	that	programmers	can	share	modules
with	one	another	for	free.	Many	of	these	modules	are	not	in	the	Python	Standard
Library,	including	the	module	we’ll	rely	on	for	the	text-to-speech	and	the	speech
recognition	functionality.	These	external	modules,	known	as	third-party
modules,	can	be	installed	separately.	Before	you	do	that,	you	need	to	check	that
the	module	isn’t	already	installed.

Check	Installed	Modules
All	modules	in	the	Python	Standard	Library	are	automatically	installed	on	your
machine	when	you	install	Python.	Other	modules	may	also	be	installed	when
you	download	various	software	or	modules.	For	example,	when	you	install
pandas	in	Chapter	14,	about	23	other	supporting	modules	will	be	installed
because	pandas	depends	on	them.

You	can	check	whether	a	module	is	installed	on	your	computer	already	with
the	following	in	your	Spyder	editor:

help("modules")

This	will	provide	you	with	the	list	of	all	modules	installed	on	your	computer.
However,	it	can	take	a	long	time	for	Python	to	list	all	the	modules	and	for	you	to
check	them.

NOTE

For	a	list	of	all	modules	in	the	Python	Standard	Library,	go	to
https://docs.python.org/3/library/.	The	list	is	constantly	changing
because	more	and	more	modules	are	added	to	the	library	over	time.

Alternatively,	you	can	check	whether	a	module	is	installed	by	trying	to	import
it:

import	ModuleName

To	check	whether	pandas	is	installed	on	your	computer,	run	import	pandas,
and	if	you	receive	no	error	message,	the	module	is	already	installed.	If	the	output
shows	ModuleNotFoundError,	you	need	to	install	it.	Let’s	see	how.

Pip	Install	Modules
The	gTTS	module	we’ll	use	in	Chapter	4	is	not	included	in	Python	Standard
Library,	so	we’ll	pip	install	it.	Open	the	Anaconda	prompt	(in	Windows)	or	a
terminal	(in	Mac	or	Linux),	and	enter	this:

pip	install	gTTS	

Follow	the	onscreen	instructions	all	the	way	through,	and	the	gTTS	module
will	be	installed.

Conda	Install	Modules
If	you	can’t	find	the	module	you	want	through	pip	install,	try	conda	install.

We’ll	install	the	yt	module	by	using	the	following	in	the	Anaconda	prompt	(in
Windows)	or	a	terminal	(in	Mac	or	Linux):

conda	install	yt	

Many	people	think	pip	install	and	conda	install	are	the	same,	but	they’re
not.	Pip	is	the	Python	packaging	authority’s	recommended	tool	for	installing
packages	from	the	Python	packaging	index.	You	can	install	Python	software	only
by	using	pip	install.	In	contrast,	Conda	is	a	cross-platform	package	and

https://docs.python.org/3/library/

environment	manager	that	installs	not	only	Python	software	but	also	packages	in
C	or	C++	libraries,	R	packages,	or	other	software.

As	you	build	more	and	more	projects	in	Python,	you’ll	install	many	modules.
Some	modules	may	interfere	with	other	modules,	and	different	projects	may	use
different	versions	of	the	same	module.	To	avoid	problems	of	clashing	modules,	I
recommend	you	build	a	virtual	environment	for	each	project.	A	virtual
environment	is	a	way	to	isolate	projects	from	each	other.

Create	a	Virtual	Environment
To	create	a	virtual	environment,	open	an	Anaconda	prompt	(in	Windows)	or	a
terminal	(in	Mac	or	Linux).	We’ll	name	the	virtual	environment	for	the	projects
in	this	book	chatting.	Enter	the	following	command:

conda	create	-n	chatting

After	pressing	ENTER,	follow	the	instructions	onscreen	and	press	y	when	the
prompt	asks	you	y/n.	Once	you	have	created	the	virtual	environment	on	your
machine,	you	need	to	activate	it.

Activate	the	Virtual	Environment	in	Windows
In	the	Anaconda	prompt	(in	Windows)	or	a	terminal	(in	Mac	or	Linux),	type	this:

conda	activate	chatting

In	Windows,	you’ll	see	the	following	on	your	Anaconda	prompt:

(chatting)	C:\>

You	can	see	the	(chatting)	prompt,	which	indicates	that	the	command	line	is
now	in	the	virtual	environment	chatting	that	you’ve	just	created.

On	a	Mac,	you	should	see	something	similar	to	the	following	in	the	terminal
(the	username	will	be	different):

(chatting)	Macs-MacBook-Pro:~	macuser$

In	Linux,	you	should	see	something	similar	to	this	on	your	terminal	(the

username	will	be	different):

(chatting)	mark@mark-OptiPlex-9020:~$

NOTE

If	you’re	using	some	versions	of	Linux,	use	activate	chatting	instead
of	conda	activate	chatting	to	activate	the	virtual	environment.	You
might	not	see	the	(chatting)	part	on	your	terminal	even	if	the	virtual
environment	is	activated.

Set	Up	Spyder	in	the	Virtual	Environment	in	Windows
Now	we	need	to	install	Spyder	in	the	new	virtual	environment.	First	make	sure
you’ve	activated	the	virtual	environment.	Then	run	this	command:

conda	install	spyder

To	then	launch	Spyder,	execute	the	following	command	in	the	same	terminal
with	the	virtual	environment	activated:

spyder

Summary
In	this	chapter,	you	learned	the	four	variable	types	and	how	to	convert	one	type
to	another.	You	also	learned	how	functions	work	in	Python.	You	learned	three
ways	to	import	a	module	into	a	script	and	the	pros	and	cons	of	each	approach.

You	also	created	your	own	functions.	You	created	a	local	module	and
imported	it	to	a	script	to	make	clean	and	concise	code.	Finally,	you	created	and
activated	a	virtual	environment	in	order	to	separate	packages	in	different
projects.

In	Chapter	3,	you’ll	learn	how	to	install	speech	recognition–related	modules	to
make	Python	understand	the	human	voice.

End-of-Chapter	Exercises
1.	 Assume:

name1	=	'Kentucky	'

name2	=	"Wildcats"

What	is	the	output	from	each	of	the	following	Python	statements?	First	write
down	the	answer	and	then	run	the	command	in	Spyder	to	verify.

print(type(name1))

print(type(name2))

print(name1	+	name2)

print(name2	+	name1)

print(name2	+	'	@	'	+	name1)

print(3	*	name2)

2.	 Assume:

x	=	3.458

y	=	-2.35

What	is	the	result	from	each	of	the	following	Python	statements?

print(type(x))

print(type(y))

print(round(x,	2))

print(round(y,	1))

print(round(x,	0))

3.	 Here	are	some	examples	of	integers:

a	=	57

b	=	-3

c	=	0

What	is	the	result	from	each	of	the	following	Python	statements?

print(type(b))

print(str(a))

print(float(c))

4.	 What	is	the	output	from	each	of	the	following	Python	statements?

print(type(5==9))

print('8<7')

print(5==9)

print(type('8<7'))

print(type('True'))

5.	 What	is	the	output	from	each	of	the	following	Python	statements?

print(int(-23.0))

print(int("56"))	

print(str(-23.0))

print(float(8))

6.	 What	is	the	output	from	each	of	the	following	Python	statements?

print(int(True))

print(float(False))

print(str(False))

7.	 What	is	the	output	from	each	of	the	following	Python	statements?

print(bool(0))

print(bool(-23))

print(bool(17.6))

print(bool('Python'))

8.	 Are	the	following	variable	names	valid,	and	why?

global

2pirnt

print2

_squ

list

9.	 The	loop	command	break	is	used	in	the	following	script.	What	should	the
output	be?	First	write	down	the	answer	and	then	run	the	command	in	Spyder
and	verify.

for	letter	in	("A",	"B",	"C"):

				if	letter	==	"B":	

								break

				for	num	in	(1,	2):		

								print(f"this	is	{letter}{num}")

10.	 The	loop	command	continue	is	used	in	the	following	script.	What	should
the	output	be?	First	write	down	the	answer	and	then	run	the	command	in
Spyder	and	verify.

for	letter	in	("A",	"B",	"C"):

				if	letter	==	"B":	

								continue

				for	num	in	(1,	2):		

								print(f"this	is	{letter}{num}")

11.	 The	loop	command	pass	is	used	in	the	following	script.	What	should	the
output	be?	First	write	down	the	answer	and	then	run	the	command	in	Spyder
and	verify.

for	letter	in	("A",	"B",	"C"):

				if	letter	==	"B":	

								pass

				for	num	in	(1,	2):		

								print(f"this	is	{letter}{num}")

12.	 What	is	the	output	from	each	of	the	following	commands?	First	write	down
the	answer	and	then	run	the	command	in	Spyder	to	verify	it.

a.	

for	i	in	range(5):

				print(i)

b.	

for	i	in	range(10,	15):

				print(i)

c.	

for	i	in	range(10,	15,	2):

				print(i)

13.	 What	is	the	value	of	team_sales(50,	100,	120)	according	to	the	defined
function	in	this	chapter?

14.	 Change	the	module	import	method	in	the	script	import_local_module.py
from	the	from	module	import	function	method	to	the	import	module
method.	Name	the	new	script	import_local_module1.py	and	make	sure	it
produces	the	same	output.

15.	 Grades	for	the	midterm	project	of	eight	groups	in	a	class	are	in	a	list	midterm
=	[95,	78,	77,	86,	90,	88,	81,	66].	Use	Python	built-in	functions	on
the	list	to	calculate	the	range	and	the	average	of	the	grades.

16.	 Assume	inp	=	"University	of	Kentucky",	and	determine	inp[5:10],
inp[-1],	inp[:10],	and	inp[5:].

17.	 If	email	=	John.Smith@uky.edu,	what	is	email.find("y")?

18.	 Assume	llst	=	[[1,2,3,5],[2,2,6,8],[2,3,5,9],[3,5,4,7],
[1,3,5,0]].	What	are	the	values	of	llst[2],	llst[2][2],	and	llst[3][0]?

19.	 What	is	the	output	from	each	of	the	following	Python	statements?

[1,	"a",	"hello",	2].remove(1)

[1,	"a",	"hello",	2].append("hi")

20.	 Assume	scores2	=	{'blue':[5,	5,	10],	'white':[5,	7,	12]}.	What	is
scores2['blue'][2]?

21.	 Here	is	an	example	of	a	tuple:	tpl	=	(1,	2,	3,	9,	0).	What	is	tpl[3:4]?

22.	 You	have	a	list	lst	=	[1,	"a",	"hello",	2].	Create	a	dictionary	with	four
key-value	pairs:	the	key	is	the	position	of	each	element	in	lst,	and	the	value
is	the	element	at	that	position.

PART	II
LEARNING	TO	TALK

3
SPEECH	RECOGNITION

In	this	chapter,	we’ll	begin	interacting	with
Python	through	speech.	We’ll	first	install
the	SpeechRecognition	module;	the

installation	process	can	be	a	source	of	frustration	and	will
therefore	require	some	careful	attention.	You’ll	then
create	a	script	to	let	Python	recognize	your	speech	and
print	it	out	to	ensure	that	the	voice	recognition	function
works	smoothly	on	your	computer.
You’ll	use	voice	control	to	complete	several	tasks,	including	voice	dictation,

opening	web	browsers,	opening	files,	and	playing	music	on	your	computer.
You’ll	put	all	code	related	to	speech	recognition	into	a	custom	local	module	so
the	final	script	is	concise	and	easy	to	read.

Before	you	begin,	set	up	the	folder	/mpt/ch03/	for	this	chapter.	All	scripts	in
this	chapter	are	available	at	the	book’s	resources	page,
https://www.nostarch.com/make-python-talk/.

NEW	SKILLS

Installing	and	customizing	speech	recognition	tools

Using	try	and	except	to	handle	potential	errors

Performing	voice-controlled	web	search

Making	cross-platform,	portable	code

Accessing	operating	system	functionalities

https://www.nostarch.com/make-python-talk/

Creating	custom	Python	modules

Install	the	SpeechRecognition	Module
Installing	the	SpeechRecognition	module	can	be	tricky,	even	to	the	point	of
frustration.	Don’t	panic;	we’ll	discuss	how	to	install	it	in	Windows,	Mac,	and
Linux.	Installing	the	SpeechRecognition	module	takes	an	extra	step	compared	to
most	modules	because	it	relies	on	the	pyaudio	module,	which	we’ll	have	to
install	manually.	The	pyaudio	module	provides	bindings	for	the	cross-platform
audio	input/output	library	portaudio.

You	cannot	pip	install	the	pyaudio	module	in	the	Anaconda	prompt	either.
Instead,	you	need	to	conda	install	it.

NOTE

Even	though	we	have	gone	to	great	lengths	to	test	the	steps	required	to
install	these	modules	on	a	variety	of	hardware	and	software	platforms,
there	is	a	chance	that	something	might	not	work	on	your	system.	If	this
happens,	be	sure	to	check	the	errata	page	for	updates,	search	the	forums
for	the	Python	packages,	or	contact	the	author.

In	Windows
First,	you	need	to	activate	the	virtual	environment	chatting	from	Chapter	2.	Go
to	your	Anaconda	prompt	and	enter	the	following:

conda	activate	chatting

You	should	see	a	modified	prompt:

(chatting)	c:\>

Note	that	the	(chatting)	in	the	prompt	indicates	that	you	are	now	in	the
virtual	environment	chatting.	If	the	command	hasn’t	worked,	return	to	Chapter	2
for	full	instructions	on	how	to	create	and	activate	a	virtual	environment.

Next,	enter	the	following	in	the	Anaconda	prompt:

(chatting)	c:\>	pip	install	SpeechRecognition	

If	you	then	try	to	import	it	and	run	a	script,	Spyder	will	tell	you	that	you	need
the	pyaudio	module	for	the	SpeechRecognition	module	to	run	correctly.

With	the	virtual	environment	chatting	activated,	run	the	following	in	your
Anaconda	prompt:

(chatting)	c:\>	conda	install	pyaudio	

Follow	the	instructions	all	the	way	through.

In	Mac	or	Linux
First,	activate	the	virtual	environment	chatting.	Open	a	terminal	and	enter	and
execute	the	following:

conda	activate	chatting

Next,	execute	the	following	in	the	terminal:

pip	install	SpeechRecognition	

If	you	now	try	to	import	SpeechRecognition	and	run	a	script,	Spyder	will	tell
you	that	you	need	pyaudio	for	SpeechRecognition	to	run	correctly.	With	the
virtual	environment	chatting	activated,	run	the	following	command	in	your
terminal:

conda	install	pyaudio	

Follow	the	instructions	all	the	way	through.

Test	and	Fine-Tune	SpeechRecognition
We’ll	next	test	and	fine-tune	the	SpeechRecognition	module	so	Python	can	take
your	voice	commands.

Import	SpeechRecognition
To	import	SpeechRecognition	in	your	Python	scripts,	use	the	following

command:

import	speech_recognition

Note	that	there	is	a	small	difference	in	the	module	name	when	you	install	it
and	when	you	import	it:	one	is	SpeechRecognition	and	the	other	is
speech_recognition.	Make	sure	you	don’t	miss	the	underscore	in	the	module
name	when	you	import	it.

You	also	need	to	have	a	microphone	plugged	into	the	computer	if	you’re	using
a	desktop.	Most	laptops	come	with	a	built-in	microphone,	but	sometimes	having
an	external	one	is	convenient	so	you	can	speak	close	to	the	microphone	and
avoid	ambient	noise.

WARNING

If	you	have	multiple	microphone	devices	on	your	computer,	make	sure
your	Python	script	is	using	the	right	one	as	the	input	device.	Better	yet,
make	sure	that	your	microphone	is	indeed	working	by	testing	it	first	with
other	applications	on	your	computer	(for	example,	Voice	Recorder	in
Windows,	Voice	Memos	or	QuickTime	Player	in	Mac,	or	Audacity	in
Linux).

Test	SpeechRecognition
Next,	let’s	test	the	hardware	and	software.	Enter	Listing	3-1	into	your	Spyder
editor	and	save	it	as	sr.py,	or	you	can	download	the	file	from	the	book’s
resources.

import	speech_recognition	as	sr

speech	=	sr.Recognizer()

print('Python	is	listening...')

with	sr.Microphone()	as	source:

				speech.adjust_for_ambient_noise(source)

				audio	=	speech.listen(source)

				inp	=	speech.recognize_google(audio)

print(f'You	just	said	{inp}.')	

Listing	3-1:	Testing	SpeechRecognition

We	import	the	SpeechRecognition	module.	Next,	we	call	Recognizer()	to
initiate	a	Recognizer	instance	from	the	module	so	that	your	script	is	ready	to
convert	voice	to	text.	We	save	it	as	the	variable	speech.	We	also	print	a	message
that	lets	you	know	the	microphone	is	ready	to	receive	speech	input.

NOTE

If	a	module	has	a	long	name,	writing	out	the	full	module	name	in	the
script	is	time-consuming	(and	can	reduce	the	code’s	readability).	You
can	use	a	shorter	alias	instead.	For	example,	import
speech_recognition	as	sr	allows	you	to	use	sr	instead	of
speech_recognition	whenever	you	refer	to	the	module.

We	tell	the	script	that	the	source	of	the	audio	comes	from	the	microphone
using	Microphone().	We	use	the	adjust_for_ambient_noise()	method	to
reduce	the	impact	of	the	ambient	noise	on	your	voice	input.	The	script	captures
the	voice	input	from	the	defined	microphone,	converts	it	into	text,	and	saves	in
inp.	We	print	out	the	value	of	inp.

Note	in	this	script,	the	Recognizer	instance	uses	recognize_google()for
recognizing	speech	from	the	audio	source.	This	method	uses	the	Google	Web
Speech	application	programming	interface	(API)	and	requires	a	good	internet
connection.	Other	methods	available	to	the	Recognizer	instance	in	the
SpeechRecognition	module	include	recognize_bing(),	which	uses	Microsoft
Bing	Speech;	recognize_ibm(),	which	uses	IBM	Speech	to	Text;	and	so	on.
The	only	method	that	works	offline	is	recognize_sphinx(),	which	uses	the
services	of	CMU	Sphinx.	However,	the	accuracy	with	recognize_sphinx()	is
not	nearly	as	good	as	with	recognize_google(),	so	we’ll	use
recognize_google()	throughout	this	book.

Run	sr.py	and	say	something	simple,	like	“Hello”	or	“How	are	you?”,	to	test	if
Python	correctly	prints	out	your	voice	input.	You	should	see	the	following	if	you
say,	“How	are	you?”:

Python	is	listening...

You	just	said	how	are	you.

If	the	script	is	working,	you’ve	successfully	installed	the	speech	recognition
feature.	If	not,	double-check	the	previous	steps	and	make	sure	your	microphone

is	connected	properly.	Also	make	sure	that	you	are	in	a	relatively	quiet	area	with
a	good	internet	connection.

Notice	that	Python	converts	almost	all	voice	input	as	lowercase	text,	which
can	be	a	good	feature	since	string	variables	are	case-sensitive.	This	way,	Python
won’t	miss	a	command	because	of	capitalization.

TRY	IT	OUT

Run	sr.py	and	try	speaking	a	few	simple	phrases	to	the	microphone	to	make	sure	the	script
understands	you.

Fine-Tune	the	Speech	Recognition	Feature
Now	you’ll	fine-tune	the	speech	recognition	code	to	make	it	more	user-friendly
for	the	rest	of	the	book.	We’ll	use	try	and	except	on	a	few	common	errors	to
allow	the	execution	of	the	code	to	continue	after	encountering	errors,	instead	of
causing	the	script	to	crash.

The	common	error	UnknownValueError	happens	when	the	Google	speech
recognition	server	cannot	understand	the	audio,	either	because	the	speech	isn’t
clear	or	because	of	ambient	noise.	The	error	RequestError	happens	when	the
Google	speech	recognition	request	fails,	either	because	of	a	bad	internet
connection	or	because	the	server	is	too	busy.	The	error	WaitTimeoutError
happens	when	the	script	doesn’t	detect	any	audio	from	the	microphone	for	a	long
period.

Without	using	try	and	except,	the	script	crashes,	and	you	have	to	start	the
script	all	over	again.	By	using	the	exception-handling	constructs,	the	script	will
continue	without	crashing.	The	errors	I	mentioned	aren’t	harmful	enough	to	be
worth	handling,	so	our	scripts	will	just	allow	those	errors	to	pass.

Listing	3-2,	stand_by.py,	uses	an	infinite	loop	to	first	stand	by	and	then
repeatedly	take	voice	inputs	and	print	them	out.	This	way,	we	don’t	have	to	rerun
the	script	every	time	we	want	the	script	to	take	our	voice	inputs.

import	speech_recognition	as	sr

speech	=	sr.Recognizer()

while	True:

				print('Python	is	listening...')

				inp	=	""	

				with	sr.Microphone()	as	source:

								speech.adjust_for_ambient_noise(source)

						1	try:

												audio	=	speech.listen(source)

												inp	=	speech.recognize_google(audio)

								except	sr.UnknownValueError:

												pass

								except	sr.RequestError:

												pass								

								except	sr.WaitTimeoutError:

												pass

		2	print(f'You	just	said	{inp}.')

				if	inp	==	"stop	listening":

								print('Goodbye!')

								break

Listing	3-2:	Code	for	stand_by.py

We	start	a	while	loop	to	put	the	script	in	standby.	This	way,	after	taking	your
voice	input,	the	script	prints	out	what	you	said	and	starts	listening	again.	At	each
iteration,	the	script	prints	Python	is	listening	so	you	know	it’s	ready.	We
define	the	variable	inp	as	an	empty	string	at	the	beginning	of	each	iteration.
Otherwise,	if	the	user	doesn’t	say	anything	for	a	while,	the	script	will	retrieve	the
inp	value	from	the	previous	iteration.	By	clearing	the	string,	we	avoid	any
potential	mix-ups.

We	use	exception	handling	when	connecting	to	the	Google	speech-recognition
server	1.	If	there	is	an	UnknownValueError,	a	RequestError,	or	a
WaitTimeoutError,	we	let	the	script	continue	without	crashing.

At	each	iteration,	the	script	prints	what	you	said	so	that	you	can	check	if	the
speech	recognition	software	has	correctly	captured	your	voice	2.

Finally,	we	don’t	want	the	script	to	run	forever,	so	we	add	a	condition	to	stop
it.	When	you	say,	“Stop	listening,”	the	if	branch	is	activated,	the	script	prints
Goodbye!,	and	the	while	loop	stops.

Here’s	a	sample	output,	with	my	voice	input	in	bold:

Python	is	listening...

You	just	said	hello.

Python	is	listening...

You	just	said	how	are	you.

Python	is	listening...

You	just	said	today	is	a	Saturday.

Python	is	listening...

You	just	said	stop	listening.

Goodbye!

Next,	you’ll	put	the	speech	recognition	feature	to	use	in	several	projects.
Some	are	practical	and	useful,	and	others	are	for	building	up	skills	for	later
chapters.

NOTE

Sometimes	the	speech	recognition	takes	a	long	time	to	process,
especially	if	there	is	ambient	noise	and	the	internet	connection	is	slow.
Try	to	test	the	script	in	a	quiet	place	with	a	good	internet	connection.

TRY	IT	OUT

Run	stand_by.py	and	say	two	simple	phrases.	After	that,	say,	“Stop	listening”	to	end	the
script.

Perform	a	Voice-Controlled	Web	Search
Our	first	project	is	a	script	to	navigate	the	web	by	using	voice.	You’ll	learn	to
use	the	webbrowser	module	to	open	a	browser	on	your	computer.	Then	you’ll
add	voice-control	functionality	to	open	the	browser	and	perform	various
searches	online.

Use	the	webbrowser	Module
The	webbrowser	module	gives	you	tools	to	open	a	website	by	using	the	default
browser	on	your	computer.	The	module	is	in	the	Python	Standard	Library,	so	no
installation	is	needed.

To	test	the	webbrowser	module	on	your	computer,	enter	the	following	lines	of
code	in	your	Spyder	editor	and	run	them:

import	webbrowser

webbrowser.open("http://"+"wsj.com")

We	use	"http://"+	inside	the	open()	function	so	that	you	need	to	input	only
the	main	body	of	the	web	address	instead	of	the	full	URL.	This	is	to	prepare	you
for	voice	activation	in	the	next	section.	The	web	browser	will	automatically
correct	the	URL	if	it	uses	https://	instead	of	http://	or	if	www	is	in	the	full	URL.

A	new	web	browser	window	should	open	on	the	Wall	Street	Journal	website.
Microsoft	Edge	is	the	default	browser	on	my	computer,	and	the	result	is	shown
in	Figure	3-1.

Figure	3-1:	Result	of	using	the	webbrowser.open("http://"+"wsj.com")	command

Add	Voice	Control
Now	we’ll	add	the	speech	recognition	feature.	Save	Listing	3-3	as
voice_browse.py.

import	webbrowser

import	speech_recognition	as	sr

speech	=	sr.Recognizer()

1	def	voice_to_text():

				voice_input	=	""	

				with	sr.Microphone()	as	source:

								speech.adjust_for_ambient_noise(source)

								try:

												audio	=	speech.listen(source)

												voice_input	=	speech.recognize_google(audio)

								except	sr.UnknownValueError:

												pass

								except	sr.RequestError:

												pass								

								except	sr.WaitTimeoutError:

												pass

				return	voice_input	

2	while	True:			

				print('Python	is	listening...')

				inp	=	voice_to_text()

				print(f'You	just	said	{inp}.')

				if	inp	==	"stop	listening":

								print('Goodbye!')

								break

				elif	"browser"	in	inp:	

								inp	=	inp.replace('browser	','')

								webbrowser.open("http://"+inp)

								continue

Listing	3-3:	Code	for	voice_browse.py

We	import	the	two	modules	needed	for	this	script:	webbrowser	and
SpeechRecognition.	At	1,	we	define	the	voice_to_text()	function,	which
contains	most	of	the	steps	in	stand_by.py:	it	starts	with	the	empty	string
voice_input,	converts	the	audio	from	the	microphone	to	text,	and	puts	it	in
voice_input.	It	also	makes	exceptions	for	the	UnknownValueError,	the
RequestError,	and	the	WaitTimeoutError.	Once	called,	the	function	will	return
the	value	stored	in	voice_input.

The	script	starts	an	infinite	loop	to	continuously	take	voice	input	2.	At	each
iteration,	it	prints	Python	is	listening...	so	you	know	it’s	ready.

WARNING

Don’t	start	speaking	into	the	microphone	before	you	see	the	message
Python	is	listening...,	or	part	(or	even	all)	of	your	speech	may	not
be	captured	by	the	speech	recognition	software.

We	call	voice_to_text()	to	capture	your	voice	input	and	save	the	converted

text	in	inp.	Note	that	I	intentionally	use	a	different	variable	name	for	the	local
variable	voice_input	and	the	global	variable	inp	to	avoid	confusion.

If	you	say,	“Stop	listening”	to	the	microphone,	the	if	branch	is	activated.	The
script	prints	Goodbye!	and	stops	running.	If	the	word	browser	is	in	your	voice
command,	the	elif	branch	is	activated.	The	script	then	puts	http://	and
whatever	you	say	next	in	the	address	bar	and	opens	the	web	browser.	For
example,	if	you	say	“browser	abc.com,”	the	replace()	method	will	change
“browser”	and	the	space	after	it	to	an	empty	string,	which	effectively	changes
inp	to	abc.com.

Here’s	one	sample	output,	with	my	voice	input	in	bold:

Python	is	listening...

You	just	said	browser	cnn.com.

Python	is	listening...

You	just	said	browser	pbs.org.

Python	is	listening...

You	just	said	stop	listening.

Goodbye!

The	associated	web	browser	pop-ups	are	as	shown	in	Figure	3-2.

Figure	3-2:	One	of	the	sample	outputs	from	voice_browse.py

You	use	the	word	browser	instead	of	browse	to	ensure	that	the	script
understands	you:	if	you	say	“Browse”	to	your	microphone,	Python	might	convert
it	to	brows	instead.	You	may	encounter	several	instances	where	slight
adjustments	will	need	to	be	made.	Since	everyone	has	a	different	voice,
microphone,	and	diction	(accent,	inflection,	and	intonation),	your	adjustments
will	likely	be	different	from	mine.

TRY	IT	OUT

Run	voice_browse.py	and	use	it	to	visit	http://nbc.com/.

Perform	a	Google	Search
We’ll	now	modify	voice_browse.py	so	you	can	voice-activate	a	Google	search.
All	you	need	to	change	is	this	one	line	of	code	from	voice_browse.py:

								webbrowser.open("http://"+inp)

Change	it	to	this:

								webbrowser.open("http://google.com/search?q="+inp)

Then	save	the	modified	script	as	voice_search.py.	(You	can	also	download	it
from	the	book’s	resources	page.)

Here	we	are	using	the	fact	that	whenever	Google	performs	a	search,	it	puts	the
search	term	after	http://google.com/search?q=	and	uses	it	as	the	URL	in	the
address	bar.	For	example,	when	you	search	how	many	liters	are	in	a	gallon
in	Google,	you	get	the	same	result	as	if	you	entered	the	URL
http://google.com/search?q=how	many	liters	are	in	a	gallon.

Run	voice_search.py	in	your	Spyder	editor.	Ask	a	question,	like	“Browser
yards	in	a	mile,”	into	the	microphone.	The	script	should	open	your	default
browser,	perform	a	Google	search	for	yards	in	a	mile,	and	show	a	result
similar	to	Figure	3-3.

http://nbc.com/

Figure	3-3:	The	result	when	you	say	“browser	yards	in	a	mile”

You	can	also	use	the	script	in	any	way	you	use	Google,	for	example,	as	a
voice-controlled	dictionary.	If	you	want	to	know	the	exact	definition	of	the	word
diligence,	you	can	say,	“Browser	define	diligence.”

TRY	IT	OUT

Run	voice_search.py	and	find	out	how	many	liters	are	in	a	gallon.

Open	Files
With	the	capability	of	speech	recognition	in	a	Python	script,	you	can	do	many
things	with	voice	control.	We’ll	build	a	script	to	open	various	types	of	files,
including	text	files,	PDF	files,	and	music	files.

Use	the	os	and	pathlib	Modules	to	Access	and	Open	Files
You	can	use	the	os	and	pathlib	modules	to	access	files	and	folders	on	your
computer.	The	os	module	accesses	operating	system	functionalities	such	as	go	to
a	folder,	open	a	file,	and	so	on.	However,	the	commands	differ	across	operating
system.	For	example,	to	open	a	file,	the	command	is	explorer	in	Windows,	open

in	Mac,	and	xdg-open	in	Linux.

To	make	your	scripts	portable	cross-platform,	we’ll	use	the	platform	module,
which	lets	the	script	automatically	identify	your	operating	system	and	then
choose	the	appropriate	command	for	you.	The	pathlib	module	allows	you	to	find
out	the	file	paths	and	specify	a	file	or	folder	path.	Luckily,	pathlib	is	cross-
platform,	so	you	don’t	have	to	worry	about	a	forward	slash	or	backslash.	All
three	modules—os,	pathlib,	and	platform—are	in	the	Python	Standard	Library,
so	no	installation	is	needed.

In	your	chapter	folder,	create	a	subfolder	called	files	and	save	a	file
example.txt	in	it.	Then	enter	Listing	3-4	in	your	Spyder	editor	and	save	it	as
os_platform.py.

import	os

import	pathlib

import	platform

myfolder	=	pathlib.Path.cwd()

print(myfolder)

myfile	=	myfolder/'files'/'example.txt'

print(myfile)

if	platform.system()	==	"Windows":

				os.system(f"explorer	{myfile}")	

elif	platform.system()	==	"Darwin":

				os.system(f"open	{myfile}")	

else:

				os.system(f"xdg-open	{myfile}")	

Listing	3-4:	Code	for	os_platform.py

We	import	the	modules,	then	use	Path.cwd()	from	pathlib	to	find	the	current
working	directory	of	the	script.	We’ll	use	this	as	the	starting	path	to	navigate
from.

We	then	specify	the	path	and	name	of	the	file	we	want	to	open.	In	the	pathlib
module,	we	use	a	forward	slash	to	denote	subfolders	no	matter	what	operating
system	you	are	using.	The	command	/'files'	tells	the	script	to	go	to	the
subfolder	files,	and	/'example.txt'	indicates	which	file	to	define	as	myfile.

The	system()	method	from	the	os	module	executes	the	command	in	a
subshell.	The	explorer	command	opens	a	folder	or	a	file	on	your	computer	in
Windows.	However,	if	you’re	using	Mac,	the	system()	method	in	the	os	module

uses	the	open	command,	and	in	Linux,	the	command	is	xdg-open.	Therefore,	the
script	opens	the	file	example.txt	in	the	subfolder	files.

For	example,	say	you’re	using	Windows	and	have	saved	the	script	in	your
chapter	folder	C:\chat\mpt\ch03.	After	running	the	script,	you’ll	have	the
following	output	in	the	IPython	console:

C:\chat\mpt\ch03

C:\chat\mpt\ch03\files\example.txt

At	the	same	time,	the	file	example.txt	should	open.

Open	Files	via	Voice	Control
We’ll	now	demonstrate	how	to	open	various	file	types,	like	MP3;	Microsoft
Word,	PowerPoint,	and	Excel;	and	PDF	files.	Before	running	the	following
script,	save	an	MP3	file,	a	Word	file,	a	PowerPoint	file,	an	Excel	file,	and	a	PDF
file	in	the	subfolder	files	you	just	created	in	your	chapter	folder.	Name	the	five
files	presentation.mp3,	lessons.docx,	graduation.pptx,	book.xlsx,	and	desk.pdf,
respectively.	It’s	best	if	the	files	are	not	too	large.

NOTE

You	need	to	have	proper	software	installed	on	your	computer	to	open	the
five	files.	To	make	sure,	you	can	double-click	each	one	to	see	if	it	opens
on	your	computer.	If	you	don’t	have	software	to	open	all	file	types,	try
only	the	ones	that	you	can	open.

Listing	3-5	shows	voice_open_file.py,	which	can	also	be	downloaded	from	the
book’s	resources	page.

import	os

import	pathlib

import	platform

import	speech_recognition	as	sr	

speech	=	sr.Recognizer()

directory	=	pathlib.Path.cwd()

1	def	voice_to_text():

				voice_input	=	""	

				with	sr.Microphone()	as	source:

								speech.adjust_for_ambient_noise(source)

								try:

												audio	=	speech.listen(source)

												voice_input	=	speech.recognize_google(audio)

								except	sr.UnknownValueError:

												pass

								except	sr.RequestError:

												pass								

								except	sr.WaitTimeoutError:

												pass

				return	voice_input

def	open_file(filename):

				if	platform.system()	==	"Windows":

								os.system(f"explorer	{directory}\\files\\{filename}")	

				elif	platform.system()	==	"Darwin":

								os.system(f"open	{directory}/files/{filename}")	

				else:

								os.system(f"xdg-open	{directory}/files/{filename}")

2	while	True:

				print('Python	is	listening...')

				inp	=	voice_to_text().lower()

				print(f'You	just	said	{inp}.')

				if	inp	==	"stop	listening":

								print('Goodbye!')

								break

				elif	"open	pdf"	in	inp:	

								inp	=	inp.replace('open	pdf	','')

								myfile	=	f'{inp}.pdf'

								open_file(myfile)

								continue

				elif	"open	word"	in	inp:	

								inp	=	inp.replace('open	word	','')

								myfile	=	f'{inp}.docx'

								open_file(myfile)

								continue

				elif	"open	excel"	in	inp:	

								inp	=	inp.replace('open	excel	','')

								myfile	=	f'{inp}.xlsx'

								open_file(myfile)

								continue

				elif	"open	powerpoint"	in	inp:	

								inp	=	inp.replace('open	powerpoint	','')

								myfile	=	f'{inp}.pptx'

								open_file(myfile)

								continue

				elif	"open	audio"	in	inp:	

								inp	=	inp.replace('open	audio	','')

								myfile	=	f'{inp}.mp3'

								open_file(myfile)

								continue

Listing	3-5:	Code	for	voice_open_file.py

As	with	voice_browse.py,	we	define	voice_to_text()	to	convert	your	voice
command	to	text	1.	We	also	define	open_file()	to	identify	your	operating
system	and	use	the	proper	command,	explorer,	open,	or	xdg-open,	to	open	the
file	on	your	computer.	Note	that	while	the	Windows	operating	system	uses	a
backward	slash	(\)	to	go	to	a	subfolder,	Mac	and	Linux	use	a	forward	slash	(/)
for	that	purpose.

The	script	is	then	put	in	standby	mode	by	using	a	while	loop	2.	Within	the
loop,	the	microphone	first	detects	your	voice	and	converts	it	into	text.	Since	we
put	the	lower()	method	after	voice_to_text(),	all	letters	in	the	variable	inp
will	be	lowercase	to	avoid	mismatch	due	to	capitalization.

NOTE

The	lower()	method	will	not	affect	the	opening	of	files	later	in	the	script
because	the	command	in	the	os.system()	method	is	not	case-sensitive.
For	example,	the	file	presentation.mp3	will	still	open	even	if	you	use	the
filename	Presentation.MP3.

If	you	say,	“Stop	listening,”	the	script	prints	Goodbye!	and	stops	running.	If
the	words	open	pdf	are	in	your	voice	command,	the	first	elif	branch	is
activated.	The	script	then	replaces	open	pdf	with	an	empty	string	so	only	the
filename	is	left	in	inp.	The	script	goes	to	the	subfolder	and	opens	the	proper
PDF	file.	For	example,	when	you	say,	“Open	PDF	desk,”	the	file	desk.pdf	will
open	on	your	computer.

When	you	say,	“Open	Word	lessons,”	the	second	elif	branch	is	activated.
The	same	principle	works	for	Excel	files	and	PowerPoint	files.	And	when	you
say,	“Open	audio	presentation,”	the	audio	file	presentation.mp3	will	start	playing
on	your	computer,	using	the	default	MP3	player.

Here	is	the	output	from	my	interaction:

Python	is	listening...

You	just	said	open	pdf	desk.

Python	is	listening...

You	just	said	open	word	lessons.

Python	is	listening...

You	just	said	

Python	is	listening...

You	just	said	open	excel	book.

Python	is	listening...

You	just	said	open	powerpoint	graduation.

Python	is	listening...

You	just	said	open	audio	presentation.

Python	is	listening...

You	just	said	stop	listening.

Goodbye!

TRY	IT	OUT

Save	a	comma-separated	values	(CSV)	file	as	payments.csv	and	an	MP4	file	as
recording.mp4	in	the	subfolder	files	in	your	chapter	folder.	Then	add	two	additional	elif
branches	in	voice_open_file.py	so	that	your	computer	will	open	the	CSV	file	when	you	say,
“Open	data	payments,”	and	will	open	the	MP4	file	when	you	say,	“Open	video	recording.”

Create	and	Import	a	Local	Module
As	you	have	probably	noticed,	the	three	scripts	voice_browse.py,
voice_search.py,	and	voice_open_file.py	share	a	large	chunk	of	the	same	code:
the	code	to	import	the	speech	recognition	module	and	define	the
voice_to_text()	function.

To	make	our	scripts	more	efficient,	we’ll	put	all	command	lines	related	to
speech	recognition	in	a	local	module.	We	can	then	import	the	module	in	any
script	that	uses	the	speech	recognition	feature.

Create	the	Local	Module	mysr
Enter	Listing	3-6	in	your	Spyder	editor	and	save	it	as	mysr.py.	Alternatively,	you
can	download	it	from	the	book’s	resources	page.

#	Get	rid	of	ALSA	lib	error	messages	in	Linux

1	import	platform

import	speech_recognition	as	sr

if		platform.system()	==	"Linux":

				from	ctypes	import	CFUNCTYPE,	c_char_p,	c_int,	cdll

				

				#	Define	error	handler

				error_handler	=	CFUNCTYPE\

				(None,	c_char_p,	c_int,	c_char_p,	c_int,	c_char_p)

				#	Don't	do	anything	if	there	is	an	error	message

		2	def	py_error_handler(filename,	line,	function,	err,	fmt):

						pass

				#	Pass	to	C

				c_error_handler	=	error_handler(py_error_handler)

				asound	=	cdll.LoadLibrary('libasound.so')

				asound.snd_lib_error_set_handler(c_error_handler)

#	Now	define	the	voice_to_text()	function	for	all	platforms

3	import	speech_recognition	as	sr

def	voice_to_text():

				voice_input	=	""	

				with	sr.Microphone()	as	source:

								speech.adjust_for_ambient_noise(source)

								try:

												audio	=	speech.listen(source)

												voice_input	=	speech.recognize_google(audio)

								except	sr.UnknownValueError:

												pass

								except	sr.RequestError:

												pass								

								except	sr.WaitTimeoutError:

												pass

				return	voice_input

Listing	3-6:	Code	for	the	self-made	module	mysr

You	can	ignore	the	first	part	of	the	code	1	if	you	aren’t	using	Linux.	The
Advanced	Linux	Sound	Architecture	(ALSA)	configuration,	which	is	coded	in
the	C	programming	language,	spits	out	warning	messages	like	these	every	time
the	pyaudio	module	is	imported:

ALSA	lib	pcm.c:2212:(snd_pcm_open_noupdate)	Unknown	PCM	

cards.pcm.rear

ALSA	lib	pcm.c:2212:(snd_pcm_open_noupdate)	Unknown	PCM	

cards.pcm.center_lfe

ALSA	lib	pcm.c:2212:(snd_pcm_open_noupdate)	Unknown	PCM	

cards.pcm.side

ALSA	lib	audio/pcm_bluetooth.c:1613:(audioservice_expect)	

BT_GET_CAPABILITIES	failed	:	Input/output	error(5)

ALSA	lib	audio/pcm_bluetooth.c:1613:(audioservice_expect)	

BT_GET_CAPABILITIES	failed	:	Input/output	error(5)

ALSA	lib	audio/pcm_bluetooth.c:1613:(audioservice_expect)	

BT_GET_CAPABILITIES	failed	:	Input/output	error(5)

ALSA	lib	audio/pcm_bluetooth.c:1613:(audioservice_expect)	

BT_GET_CAPABILITIES	failed	:	Input/output	error(5)

ALSA	lib	pcm_dmix.c:957:(snd_pcm_dmix_open)	

The	dmix	plugin	supports	only	playback	stream

ALSA	lib	pcm_dmix.c:1018:(snd_pcm_dmix_open)	unable	to	open	slave

We	create	an	error	handler	in	Python	2	and	pass	it	to	C	so	that	you	won’t	see
any	error	messages	when	you	import	pyaudio.	The	details	are	beyond	the	scope
of	this	book,	so	it’s	okay	if	you	don’t	understand	this	part.	Just	leave	the	error
handler	in	the	module	mysr,	and	it	won’t	affect	your	understanding	for	the	rest	of
the	book.

Starting	at	3,	we	import	the	SpeechRecognition	module,	initiate	the
Recognizer()	class,	and	define	the	voice_to_text()	function.

Note	that	if	you	run	mysr.py,	nothing	will	happen.	This	is	because	we	just
define	voice_to_text()	in	this	script	and	don’t	call	it.

Import	mysr
Let’s	revisit	stand_by.py	and	modify	it	to	use	mysr.	Save	Listing	3-7	as
stand_by1.py.

#	Make	sure	you	put	mysr.py	in	the	same	folder	as	this	script

from	mysr	import	voice_to_text

while	True:

				print('Python	is	listening...')

		1	inp	=	voice_to_text()

				print(f'You	just	said	{inp}.')

				if	inp	==	"stop	listening":

								print('Goodbye!')

								break

Listing	3-7:	Code	for	stand_by1.py

We’ve	replaced	all	speech	recognition–related	code	with	just	one	line:	from
mysr	import	voice_to_text.	This	line	tells	the	script	to	go	to	the	local	module
mysr	and	import	voice_to_text()	to	be	used	in	the	current	script.

Whenever	you	need	to	convert	speech	to	text,	you	simply	call
voice_to_text()	1.

TRY	IT	OUT

Run	stand_by1.py	and	say	two	simple	phrases	as	you	did	in	the	“Try	It	Out”	exercise	on	page
61	and	see	if	you	get	the	same	results.	After	that,	say,	“Stop	listening”	to	end	the	script.

Summary
In	this	chapter,	we	installed	the	SpeechRecognition	module	and	used	try	and
except	to	handle	potential	errors.	In	this	way,	we	prevent	the	script	from	closing
when	we	would	rather	it	continue.	We	tested	the	voice	control	functionality	with
a	few	projects:	voice-controlled	web	surfing	and	voice-controlled	web	search.

You	learned	how	to	use	the	os	module	to	open	files	and	the	pathlib	module	to
navigate	through	the	file	path,	as	well	as	the	platform	module	to	make	your
Python	code	cross-platform.

Finally,	you	put	all	code	related	to	speech	recognition	into	a	self-made	local
module	so	that	your	scripts	look	concise,	short,	and	clean.	We’ll	use	this	module
throughout	the	rest	of	the	book.

End-of-Chapter	Exercises
1.	 Modify	stand_by.py	so	that	you	end	the	while	loop	by	saying,	“Quit	the

script”	instead	of	“Stop	listening,”	and	when	the	while	loop	ends,	the	script
prints	Have	a	great	day!

2.	 Modify	voice_open_file.py	so	that	when	you	say,	“Open	text	filename,”
filename.txt	will	open	on	your	computer.

3.	 Modify	voice_open_file.py	so	that	it	imports	voice_to_text()	from	the
local	mysr	module.

4
MAKE	PYTHON	TALK

In	this	chapter,	you’ll	learn	how	to	make
Python	talk	back	to	you	in	a	human	voice.
You’ll	first	install	the	text-to-speech

module	based	on	your	operating	system	and	then	teach
Python	to	speak	aloud	whatever	you	enter	on	your
computer.	You’ll	also	add	the	speech	recognition	feature
you	learned	in	Chapter	3	and	get	Python	to	repeat	your
own	speech.	Finally,	you’ll	build	a	real-world	application
to	use	voice	inputs	to	ask	Python	to	calculate	the	area	of	a
rectangle	and	tell	you	the	answer	in	a	human	voice.
To	save	space,	you’ll	put	all	text-to-speech-related	code	in	a	self-made

module.	Once	you	do	that,	you	can	import	the	module	into	any	script	that	needs
the	text-to-speech	feature.

You’ll	also	learn	how	to	ask	Python	to	read	a	long	text	file,	such	as	a	news
article,	aloud.	Before	you	begin,	set	up	the	folder	/mpt/ch04/	for	this	chapter.	As
in	previous	chapters,	you	can	download	the	code	for	all	the	scripts	from
https://www.nostarch.com/make-python-talk/.

NEW	SKILLS

Installing	speech-related	modules	depending	on	your	operating	system

Adjusting	properties	of	your	text-to-speech	module

https://www.nostarch.com/make-python-talk/

Creating	a	module	that	is	portable	cross-platform

Combining	the	text-to-speech	module	with	speech	recognition	so	a	computer	can	repeat
what	you	said

Making	the	computer	solve	a	problem	and	answer	you	in	a	human	voice

Install	the	Text-to-Speech	Module
Python	has	two	commonly	used	text-to-speech	modules:	pyttsx3	and	gTTS.	If
you	use	Windows,	you’ll	install	pyttsx3	and	use	it	throughout	the	book.	In	the
Windows	operating	system,	the	pyttsx3	module	works	offline,	has	a	human-like
voice,	and	lets	you	adjust	the	speech	properties—namely,	the	speed,	volume,	and
gender	of	the	voice	output.

However,	the	pyttsx3	module	works	differently	in	Mac	and	Linux.	The	voice
sounds	robotic,	and	the	speech	properties	are	not	easily	adjustable.	Therefore,
you’ll	install	gTTS	if	you	use	Mac	or	Linux.	The	gTTS	module	requires	an
internet	connection	since	it	uses	the	Google	Translate	text-to-speech	API.
Further,	gTTS	does	not	play	the	sound	directly.	It	saves	the	voice	as	an	audio	file
or	file-like	object.	You’ll	have	to	use	your	own	audio	player	to	hear	the	voice.
The	voice	generated	by	gTTS	is	very	human-like.

In	Chapter	2,	you	built	a	virtual	environment	called	chatting,	which	you	then
used	for	speech	recognition	in	Chapter	3.	You’ll	install	the	pyttsx3	or	gTTS
module	in	the	same	virtual	environment	so	your	script	will	have	both	the	speech
recognition	and	text-to-speech	features.

Setup
If	you	are	using	Windows,	go	to	the	“Install	pyttsx3	in	Windows”	section	and
skip	the	“Install	gTTS	in	Mac	or	Linux”	section.	Otherwise,	skip	the	“Install
pyttsx3	in	Windows”	section	and	go	to	the	“Install	gTTS	in	Mac	or	Linux”
section.

Install	pyttsx3	in	Windows
The	pyttsx3	module	is	not	in	the	Python	standard	library,	so	you’ll	need	to	install
it	via	pip.

If	you	haven’t	already	set	up	your	chatting	virtual	environment,	go	back	to
Chapter	2	now	and	follow	the	instructions	to	do	so.	Then	activate	the	virtual

environment	chatting	in	the	Anaconda	prompt	by	executing	the	following:

conda	activate	chatting

With	your	chatting	virtual	environment	activated,	enter	this:

pip	install	pyttsx3

Follow	the	instructions	onscreen	to	finish	the	installation.

Install	gTTS	in	Mac	or	Linux
The	gTTS	module	is	not	in	the	Python	standard	library,	so	you’ll	need	to	install	it
via	pip.

If	you	haven’t	already	set	up	your	chatting	virtual	environment,	go	back	to
Chapter	2	now	and	follow	the	instructions	to	do	so.	Then	activate	the	virtual
environment	chatting	in	a	terminal	by	executing	the	following:

conda	activate	chatting

With	your	chatting	virtual	environment	activated	in	your	terminal,	enter	this
command:

pip	install	gTTs

Follow	the	instructions	onscreen	to	finish	the	installation.

Test	Your	Text-to-Speech	Module
Before	beginning,	you’ll	check	that	your	text-to-speech	module	is	properly
installed	and	working.	Based	on	your	operating	system,	skip	the	sections	that
don’t	apply	to	you.

Run	a	Sample	Script	in	Windows
With	your	virtual	environment	activated	and	Spyder	open,	copy	the	script
test_pyttsx3.py	into	your	editor	and	save	it	in	your	chapter	folder.	If	you	prefer,
you	can	download	the	file	from	the	book’s	resources	through
https://www.nostarch.com/make-python-talk/.

https://www.nostarch.com/make-python-talk/

import	pyttsx3

engine	=	pyttsx3.init()

engine.say("hello,	how	are	you?")

engine.runAndWait()

First,	import	the	pyttsx3	module	to	the	script.	Then	use	init()	to	initiate	a
text-to-speech	engine	in	the	pyttsx3	module	and	call	it	engine.	The	say()
function	in	the	pyttsx3	module	converts	the	text	to	a	speech	signal	and	prepares
to	send	it	to	the	speaker.	The	runAndWait()	function	then	sends	the	actual
speech	signal	to	the	speaker	so	you	can	hear	the	sound.	The	runAndWait()
function	also	keeps	the	engine	running	so	that	when	you	want	to	convert	text	to
speech	later	in	the	script,	you	don’t	need	to	initiate	the	engine	again.

To	understand	how	each	line	of	code	functions,	run	test_pyttsx3.py	line	by	line
by	using	the	F9	key.

NOTE

The	say()	function	in	the	pyttsx3	module	only	converts	the	text	to	a
speech	signal	and	prepares	to	send	it	to	the	speaker.	It	does	not	do	the
actual	speaking.	To	hear	the	sound,	use	runAndWait(),	which	sends	the
speech	signal	to	the	speaker.

If	the	module	is	correctly	installed,	when	you	finish	running	the	whole	script,
you	should	hear	a	voice	saying,	“Hello,	how	are	you?”	If	not,	recheck	the
instructions	and	make	sure	that	the	speaker	on	your	computer	is	working
properly	at	the	right	volume.	I’ll	discuss	later	in	this	chapter	how	to	customize
the	speed,	volume,	and	voice	gender	associated	with	the	pyttsx3	module.

Run	a	Sample	Script	in	Mac	or	Linux
You’ll	use	the	gtts-cli	tool	(cli	stands	for	command	line)	to	convert	text	to
speech,	instead	of	converting	text	to	an	audio	file,	and	then	play	it.	The	gtts-cli
tool	is	faster	than	the	alternative	method.	Once	you	install	the	gTTS	module,	the
gtts-cli	tool	is	available	in	the	command	line	in	your	virtual	environment.	The
gtts-cli	tool	converts	the	text	to	a	file-like	object,	and	you	have	to	choose	which
audio	player	to	play	it.	I	find	that	the	mpg123	player	works	well.

First,	you	need	to	install	the	mpg123	player	on	your	computer.	If	you	are
using	Mac,	run	the	following	command	in	a	terminal:

brew	install	mpg123

If	you	are	using	Linux,	run	the	following	two	commands	on	a	terminal:

sudo	apt-get	update

sudo	apt-get	install	mpg123

Once	you’re	finished,	with	your	virtual	environment	activated,	run	the
following	command	in	a	terminal:

gtts-cli	--nocheck	"hello,	how	are	you?"	|	mpg123	-q	-

If	you	have	correctly	installed	everything,	you	should	hear	a	voice	saying,
“Hello,	how	are	you?”	If	not,	recheck	the	instructions	and	make	sure	that	the
speaker	on	your	computer	is	working	properly	at	the	right	volume.	Further,	since
you	have	installed	the	gTTS	module	in	your	virtual	environment,	you	have	to	run
the	preceding	command	with	your	virtual	environment	activated.	Otherwise,	it
won’t	work.

The	nocheck	option	in	this	command	is	to	speed	up	execution.	The	q	flag
instructs	the	module	not	to	display	copyright	and	version	messages,	even	in	an
interactive	mode.	Make	sure	you	don’t	miss	the	hyphen	at	the	end	of	the
command.

Next,	you’ll	use	the	os	module	in	Python	to	execute	commands	in	a	subshell.

Copy	the	test_gtts.py	script	into	your	Spyder	editor	and	save	it	in	your	chapter
folder.	The	script	is	also	available	at	the	book’s	resources	through
https://www.nostarch.com/make-python-talk/.

import	os

os.system('gtts-cli	--nocheck	"hello,	how	are	you?"	|	mpg123	-q	-

')

First	import	the	os	module	to	the	script.	Then	use	system()	to	execute	a
command	in	a	subshell	to	achieve	the	same	effect	as	running	the	command	in	a
terminal.	As	a	result,	the	gtts-cli	tool	is	used	to	convert	text	to	a	file-like	object.
After	that,	the	mpg123	player	plays	the	sound	object	so	you	can	hear	a	human
voice.

https://www.nostarch.com/make-python-talk/

NOTE

You	don’t	need	to	explicitly	import	the	gTTS	module	in	test_gtts.py
because	you	use	the	gtts-cli	tool	in	the	command	line,	even	though	the
gTTS	module	is	used.

If	you’ve	done	everything	correctly,	you	should	hear	a	voice	saying,	“Hello,
how	are	you?”

Convert	Text	to	Voice	in	Windows
Now	let’s	practice	converting	written	text	input	into	a	human	voice	in	Windows.
With	your	virtual	environment	activated	and	Spyder	open,	copy	the	script
tts_windows.py,	as	shown	in	Listing	4-1,	into	your	editor	and	save	and	run	it.

import	pyttsx3

engine	=	pyttsx3.init()

1	while	True:

				inp	=	input("What	do	you	want	to	covert	to	speech?\n")

				if	inp	==	"done":

									print(f"You	just	typed	in	{inp};	goodbye!")

									engine.say(f"You	just	typed	in	{inp};	goodbye!")

									engine.runAndWait()								

									break

		2	else:

								print(f"You	just	typed	in	{inp}")

								engine.say(f"You	just	typed	in	{inp}")

								engine.runAndWait()

								continue

Listing	4-1:	Converting	text	to	voice	in	Windows

After	importing	the	pyttsx3	module	and	initiating	a	text-to-speech	engine,	start
an	infinite	loop	to	take	user	text	input	1.	In	each	iteration,	the	script	asks	for
text	input	at	the	IPython	console.	If	you	want	to	stop	the	script,	enter	done,	and
the	script	will	print	and	say	in	a	human	voice,	“You	just	typed	in	done;
goodbye!”	After	that,	the	loop	stops,	and	the	script	quits	running.

If	the	text	input	is	not	done,	the	else	branch	runs	2,	and	the	script	speaks
your	text	input	out	loud	in	a	human	voice.	After	that,	the	script	goes	to	the	next

iteration	and	takes	your	text	input	again.

The	following	is	sample	output	from	the	script	(user	input	is	in	bold):

What	do	you	want	to	covert	to	speech?

Python	is	great!

You	just	typed	in	Python	is	great!

What	do	you	want	to	covert	to	speech?

Hello,	world!

You	just	typed	in	Hello,	world!

What	do	you	want	to	covert	to	speech?

done

You	just	typed	in	done;	goodbye!

Convert	Text	to	Voice	in	Mac	or	Linux
Now	we’ll	practice	converting	written	text	input	into	a	human	voice	in	Mac	or
Linux.	With	your	virtual	environment	activated	and	Spyder	open,	copy	the	script
tts_mac_linux.py	(Listing	4-2)	into	your	editor,	and	save	and	run	it.

import	os

while	True:	1

				inp	=	input("What	do	you	want	to	covert	to	speech?\n")

				if	inp	==	"done":

								print(f"You	just	typed	in	{inp};	goodbye!")

								os.system(f'gtts-cli	--nocheck	"You	just	typed	in	{inp};	

goodbye!"	|	mpg123	-q	-')

								break

				else:	2

								print(f"You	just	typed	in	{inp}")

								os.system(f'gtts-cli	--nocheck	"You	just	typed	in	{inp}"	

|	mpg123	-q	-')

								continue

Listing	4-2:	Converting	text	to	voice	in	Mac	and	Linux

After	importing	the	os	module	so	you	can	run	commands	in	a	subshell,	start
an	infinite	loop	to	take	user	text	input	1.	In	each	iteration,	the	script	asks	for
text	input	at	the	IPython	console.	If	you	want	to	stop	the	script,	enter	done,	and
the	script	will	print	and	say	in	a	human	voice,	“You	just	typed	in	done;

goodbye!”	After	that,	the	loop	stops,	and	the	script	quits	running.

If	the	text	input	is	not	done,	the	else	branch	runs	2,	and	the	script	speaks
your	text	input	out	loud	in	a	human	voice.	After	that,	the	script	goes	to	the	next
iteration	and	takes	your	text	input	again.

The	following	is	sample	output	from	the	script	(user	input	is	in	bold):

What	do	you	want	to	covert	to	speech?

Python	is	great!

You	just	typed	in	Python	is	great!

What	do	you	want	to	covert	to	speech?

Hello,	world!

You	just	typed	in	Hello,	world!

What	do	you	want	to	covert	to	speech?

done

You	just	typed	in	done;	goodbye!

Repeat	After	Me
We’ll	start	with	a	simple	script	that	hears	what	you	say	aloud	and	repeats	it	in	a
human	voice.	This	script	serves	two	purposes.	First,	you’ll	learn	how	the	script
takes	your	voice	inputs	and	which	words	are	easiest	for	the	script	to	understand
—some	uncommon	words	won’t	be	understood.	Second,	you’ll	learn	how	to	put
both	the	speech	recognition	and	text-to-speech	features	in	the	same	script	so	you
can	communicate	with	the	computer	through	human	voices	only.

We’ll	also	make	the	script	portable	cross-platform.	The	script	will
automatically	choose	the	pyttsx3	module	if	you	are	using	Windows	and	the	gTTS
module	otherwise.

Start	a	new	script,	name	it	repeat_me.py,	and	enter	the	code	in	Listing	4-3.
Make	sure	to	save	it	in	your	chapter	folder.	You’ll	also	need	to	copy	your
mysr.py	file	from	Chapter	3	and	paste	it	into	the	same	folder,	as	you’ll	need
voice_to_text()	from	that	script.

#	Make	sure	you	put	mysr.py	in	the	same	folder	as	this	script

from	mysr	import	voice_to_text

import	platform	1

if	platform.system()	==	"Windows":

				import	pyttsx3

				engine	=	pyttsx3.init()

else:

				import	os

				

while	True:			

				print('Python	is	listening...')

				inp	=	voice_to_text()	2

				if	inp	==	"stop	listening":

								print(f'You	just	said	{inp};	goodbye!')

								if	platform.system()	==	"Windows":

												engine.say(f'You	just	said	{inp};	goodbye!')

												engine.runAndWait()

								else:

												os.system(f'gtts-cli	--nocheck	"You	just	said	{inp};	

goodbye!"	|	mpg123	-q	-')

								break

				else:

								print(f'You	just	said	{inp}')

								if	platform.system()	==	"Windows":	3

												engine.say(f'You	just	said	{inp}')

												engine.runAndWait()

								else:

												os.system(f'gtts-cli	--nocheck	"You	just	said	{inp}"	

|	mpg123	-q	-')

								continue

Listing	4-3:	Repeating	aloud

WARNING

Remember	to	put	mysr.py	in	the	same	folder	as	Listing	4-3.	Otherwise,
the	speech	recognition	feature	won’t	work!	Yes,	I’ve	said	this	before,	but
it’s	important	enough	to	bear	repeating.

First,	import	the	voice_to_text()	function	from	the	mysr	module	to	convert
voice	commands	into	a	string	variable.	Then,	import	the	platform	module,	which
lets	the	script	automatically	identify	your	operating	system	and	choose	the
appropriate	command	for	you	1.	If	you	are	using	Windows,	the	script	imports
the	pyttsx3	module	and	initiates	a	text-to-speech	engine.	Otherwise,	the	script

imports	the	os	module	so	you	can	use	the	gtts-cli	tool	in	a	subshell.

You	then	start	an	infinite	loop	to	take	voice	inputs.	The	script	takes	your	voice
command	and	converts	it	into	a	string	variable	called	inp	2.	If	you	say,	“Stop
listening”	into	the	microphone,	the	script	will	say	aloud,	“You	just	said	stop
listening;	goodbye!”	After	that,	the	script	stops.	The	script	uses	either	the	pyttsx3
module	or	the	gtts-cli	tool,	depending	on	your	operating	system.

If	you	say	anything	else	into	the	microphone,	the	loop	will	keep	running.	At
each	iteration,	the	script	will	repeat	what	you	said	out	loud	3.

The	following	is	the	output	from	the	script	after	I	said,	“Hello,”	“How	are
you,”	and	“Stop	listening”	into	the	microphone	sequentially:

Python	is	listening...

You	just	said	hello

Python	is	listening...

You	just	said	how	are	you

Python	is	listening...

You	just	said	stop	listening;	goodbye!

NOTE

If	you	pause	often	while	the	script	stands	by,	the	script	may	say,	“You
just	said”	in	a	human	voice	again	and	again	when	you	are	not	speaking.
To	avoid	that,	you	can	modify	repeat_me.py	by	removing	the	You	just
said	part	(3	in	Listing	4-3).

Customize	the	Speech
In	this	section,	you’ll	learn	how	to	customize	the	speech	produced	by	your	text-
to-speech	module.	You	can	adjust	the	speed	and	volume	of	the	speech	as	well	as
the	identity	of	the	voice	in	the	pyttsx3	module	in	Windows.	If	you	are	using	Mac
or	Linux,	the	only	thing	you	can	customize	is	the	speed	of	the	voice	in	the	gTTS
module.

Skip	any	of	the	following	subsections	that	don’t	apply	to	your	operating
system.

Retrieve	Default	Settings	in	the	pyttsx3	Module	in	Windows

First,	you	need	to	see	the	default	values	of	the	parameters	for	the	speed,	volume,
and	identity	of	the	voice	in	the	pyttsx3	module	in	Windows.

This	script	will	retrieve	the	default	settings	for	your	speech	module.	In	Spyder,
enter	the	code	in	Listing	4-4	and	save	it	as	pyttsx3_property.py	in	the	chapter
folder.

import	pyttsx3

engine	=	pyttsx3.init()

1	voices	=	engine.getProperty('voices')

for	voice	in	voices:

				print(voice)

2	rate	=	engine.getProperty("rate")

print("the	default	speed	of	the	speech	is",	rate)

vol	=	engine.getProperty("volume")

print("the	default	volume	of	the	speech	is",	vol)

Listing	4-4:	Retrieving	the	default	settings

At	1,	you	use	getProperty()	to	obtain	the	properties	of	the	voices	used	in
the	engine.	You	then	iterate	through	all	the	voice	objects	in	the	list	voices	and
print	out	individual	voice	objects.

You	use	getProperty()	2	to	obtain	the	properties	of	the	speed	and	print	the
default	speed,	then	do	the	same	for	the	default	volume.

If	you	run	this	script	in	Windows,	you’ll	see	the	default	settings	for	your
speech	script,	similar	to	the	following	output:

<Voice	

id=HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Speech\Voices\Tokens\TTS_MS_EN-

US_DAVID_11.0

										name=Microsoft	David	Desktop	-	English	(United	States)

										languages=[]

										gender=None

										age=None>

<Voice	

id=HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Speech\Voices\Tokens\TTS_MS_EN-

US_ZIRA_11.0

										name=Microsoft	Zira	Desktop	-	English	(United	States)

										languages=[]

										gender=None

										age=None>

the	default	speed	of	the	speech	is	200

the	default	volume	of	the	speech	is	1.0

Here	you	can	see	the	two	voices	available	to	the	pyttsx3	module.	The	first
voice,	named	David,	has	a	male	voice	tone;	the	second	voice,	named	Zira,	has	a
female	voice	tone.	The	default	voice	tone	is	David—hence	the	male	voice	you
hear	in	test_pyttsx3.py.

The	default	speech	speed	is	200	words	per	minute.	The	default	volume	is	set
at	1.	You’ll	learn	how	to	adjust	the	speed,	volume,	and	ID	in	the	pyttsx3	module
in	Windows	next.

Adjust	Speech	Properties	in	the	pyttsx3	Module	in
Windows
This	script	will	change	the	default	settings	so	you	can	hear	a	voice	with	the
speed,	volume,	and	ID	that	you	prefer.	Save	Listing	4-5	as	pyttsx3_adjust.py.

import	pyttsx3

engine	=	pyttsx3.init()

voice_id	=	1

1	voices	=	engine.getProperty('voices')

engine.setProperty('voice',	voices[voice_id].id)

engine.setProperty('rate',	150)

engine.setProperty('volume',	1.2)

engine.say("This	is	a	test	of	my	speech	id,	speed,	and	volume.")

engine.runAndWait()

Listing	4-5:	Adjusting	some	settings

Choose	the	second	voice	ID,	which	has	a	female	voice.	At	1,	the	script
obtains	the	voice	objects	available	in	the	text-to-speech	engine	and	saves	them	in
a	list	called	voices.	Choose	the	second	object	in	the	list	voices,	which	has	a
female	voice	tone,	by	giving	the	index	[1].	The	setProperty()	function	takes
two	arguments:	the	property	to	set	and	the	value	to	set	it	to.	Set	the	value	to
voices[voice_id].id	to	choose	the	id	value	of	the	female	voice	object	in
Windows,	which	is
HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Speech\Voices\Tokens\TTS_MS_EN-
US_ZIRA_11.0.	If	you	want	to	change	to	the	male	voice	in	Windows,	you	can
use	voices[0].id	instead.

Next,	you	set	the	speech	speed	to	150	words	per	minute.	Most	of	us	speak	at	a

rate	of	about	125	words	per	minute	in	everyday	conversation.	For	faster	speech,
set	rate	to	a	number	greater	than	125,	and	for	slower	speech,	set	it	to	a	number
below	125.

Then,	the	volume	is	set	to	1.2,	which	is	louder	than	the	default	value	of	1.	You
can	set	this	to	higher	or	lower	than	1	based	on	your	preference	and	speakers.

Finally,	the	script	converts	the	text	in	say()	into	speech	by	using	the	adjusted
properties.	Try	running	this	script	multiple	times	with	different	combinations	of
parameters	until	you	find	the	best	combination	for	you.	You	can	always	come
back	to	this	script	and	make	adjustments.

Customize	the	gTTS	Module	in	Mac	or	Linux
You	can	customize	the	speed,	but	not	the	volume	or	ID,	of	the	voice	in	gTTS,
according	to	the	gTTS	documentation;	see,	for	example,
https://buildmedia.readthedocs.org/media/pdf/gtts/latest/gtts.pdf.	However,	gTTS
can	convert	text	to	speech	in	most	major	world	languages	including	Spanish,
French,	German,	and	so	on,	which	the	pyttsx3	module	can’t	do.	You’ll	use	this
feature	of	gTTS	to	build	a	voice	translator	in	Chapter	16.

This	script	will	change	the	default	speed	to	slow	for	the	gTTS	module.	In
Spyder,	enter	the	following	code	and	save	it	as	gtts_slow.py	in	the	chapter	folder:

import	os

os.system('gtts-cli	--nocheck	--slow	"hello,	how	are	you?"	|	

mpg123	-q	-')

The	script	is	the	same	as	test_gtts.py	you’ve	created	before	except	that	it	adds
the	--slow	option.	This	changes	the	voice	output	to	slower	than	normal.

If	you	run	this	script	in	Mac	or	Linux,	you’ll	hear	the	computer	saying,
“Hello,	how	are	you?”	slowly.

Since	the	default	setting	for	the	speed	is	slow=False,	and	that’s	what	we
prefer,	we	won’t	customize	the	gTTS	module.

Build	the	Local	mysay	Module
In	Chapter	3,	you	put	all	commands	related	to	speech	recognition	in	a	local
module	named	mysr.	You’ll	do	the	same	here	and	put	all	text-to-speech-related

https://buildmedia.readthedocs.org/media/pdf/gtts/latest/gtts.pdf

commands	in	a	local	module.

Create	mysay
You’ll	create	a	local	module	mysay	and	save	it	in	the	same	folder	as	any	script
that	uses	the	text-to-speech	feature.	That	way,	you	can	save	space	in	the	main
script.	This	module	has	adjusted	the	properties	for	speed,	volume,	and	gender	of
the	speech	set	in	pyttsx3_adjust.py	if	you	are	using	Windows.	If	you	are	using
Mac	or	Linux,	the	local	module	mysay	will	use	the	default	properties	in	the	gTTS
module.	You	can	modify	these	parameters	based	on	your	own	preferences.

Enter	the	code	in	Listing	4-6	and	save	it	as	mysay.py	in	your	chapter	folder.

#	Import	the	platform	module	to	identify	your	OS

import	platform

#	If	you	are	using	Windows,	use	pyttsx3	for	text	to	speech

1	if	platform.system()	==	"Windows":

				import	pyttsx3

		2	try:

								engine	=	pyttsx3.init()

				except	ImportError:

								pass

				except	RuntimeError:

								pass				

				voices	=	engine.getProperty('voices')

				engine.setProperty('voice',	voices[1].id)

				engine.setProperty('rate',	150)

				engine.setProperty('volume',	1.2)

				def	print_say(txt):

								print(txt)

								engine.say(txt)

								engine.runAndWait()

#	If	you	are	using	Mac	or	Linux,	use	gtts	for	text	to	speech

3	if		platform.system()	==	"Darwin"	or	platform.system()	==	

"Linux":

				import	os

				def	print_say(texts):

								print(texts)

								texts	=	texts.replace('"','')

								texts	=	texts.replace("'","")

								os.system(f'gtts-cli	--nocheck	"{texts}"	|	mpg123	-q	-')

Listing	4-6:	Building	the	module

You	first	import	the	platform	module	to	identify	your	operating	system.	If	you
are	using	Windows	1,	the	pyttsx3	module	is	imported.	You	use	exception
handling	when	initiating	the	text-to-speech	engine	2	so	that	if	you	get	an
ImportError	or	RuntimeError,	the	script	will	keep	running	rather	than	crash.
You	then	define	print_say(),	which	prints	the	text	and	converts	text	to	speech.

If	you	are	using	Mac	or	Linux	3,	the	os	module	is	imported	to	use	the	gtts-cli
tool	to	run	the	command	in	a	subshell.	You	then	define	a	different	print_say()
function	that	prints	the	text	and	converts	text	to	speech.

NOTE

If	you	are	using	Windows,	the	module	mysay	has	adjusted	the	properties
of	the	speed,	volume,	and	gender	of	the	speech.	You	can	modify	these
parameters	based	on	your	own	preferences.

Import	mysay
With	mysay	prepared,	you	can	simply	import	the	module	to	your	script	to	use	the
text-to-speech	features.	Let’s	revisit	the	script	repeat_me.py	and	modify	it	to	use
the	mysay	module.	Save	the	following	as	repeat_me1.py:

#	Put	mysr.py	and	mysay.py	in	the	same	folder	as	this	script

from	mysr	import	voice_to_text

from	mysay	import	print_say

while	True:			

				print('Python	is	listening...')

				inp	=	voice_to_text()

				if	inp	==	"stop	listening":

								print_say(f'You	just	said	{inp};	goodbye!')

								break

				else:

								print_say(f'You	just	said	{inp}')

								continue

You	first	import	print_say()	from	mysay.	You	also	import	voice_to_text()
from	the	mysr	module	created	in	Chapter	3.	You	use	voice_to_text()	to
convert	your	voice	command	into	a	variable	inp.	When	you	want	to	covert	text

to	speech,	you	use	print_say().

Run	the	script	and	speak	into	the	microphone	to	test	it	out.	I	said,	“Hello
again,”	“This	one	is	using	a	text-to-speech	module,”	and	“Stop	listening,”	to	the
script	in	that	order.	Here	is	the	output:

Python	is	listening...

You	just	said	hello	again

Python	is	listening...

You	just	said	this	one	is	using	a	text-to-speech	module

Python	is	listening...

You	just	said	stop	listening;	goodbye!

TRY	IT	YOURSELF

Run	repeat_me1.py	and	say	three	phrases	into	the	microphone	so	that	Python	repeats	after
you,	phrase	by	phrase.	When	it	is	finished,	use	the	voice	command	“I	am	done”	to	exit	the
script	(you	need	to	modify	the	script	slightly).

Build	a	Voice-Controlled	Calculator
You’ll	use	your	text-to-voice	and	speech-parsing	skills	to	build	a	calculator	that
you	can	speak	commands	to.	The	calculator	finds	the	area	of	a	rectangle	and	tells
you	the	area	in	a	human	voice.

This	script	takes	from	you	the	width	and	length	of	a	rectangle	and	speaks	back
its	area.	Save	Listing	4-7	as	area_hs.py	in	your	chapter	folder.

#	Put	mysr.py	and	mysay.py	in	the	same	folder	as	this	script

from	mysr	import	voice_to_text

from	mysay	import	print_say

#	Ask	the	length	of	the	rectangle

1	print_say('What	is	the	length	of	the	rectangle?')

#	Convert	the	voice	input	to	a	variable	inp1

inp1	=	voice_to_text()

print_say(f'You	just	said	{inp1}.')

#	Ask	the	width	of	the	rectangle

print_say('What	is	the	width	of	the	rectangle?')

#	Save	the	answer	as	inp2

inp2	=	voice_to_text()

print_say(f'You	just	said	{inp2}.')

#	Calculate	the	area

2	area	=	float(inp1)*float(inp2)

#	Print	and	speak	the	result

print_say(f'The	area	of	the	rectangle	is	{area}.')

Listing	4-7:	Calculating	the	area	of	a	rectangle

You	first	import	the	text-to-speech	and	speech	recognition	functions	from
local	modules.	The	script	asks	you	about	the	length	of	the	rectangle	1.	Speak	a
number	into	the	microphone,	and	the	script	converts	your	voice	input	into	text
and	saves	it	as	the	variable	inp1.	The	script	then	asks	you	for	the	width	of	the
rectangle.	When	you	speak	your	answer,	the	script	saves	your	voice	input	in	the
variable	inp2.

Based	on	your	inputs,	the	script	calculates	the	area	of	the	rectangle	2	by
converting	your	voice	inputs	into	float	variables	and	multiplying	them.

The	script	will	speak	the	result	aloud	as	well	as	print	the	interactions	to	the
screen.	Here	is	one	interaction	with	the	script:

What	is	the	length	of	the	rectangle?

You	just	said	5.

What	is	the	width	of	the	rectangle?

You	just	said	3.

The	area	of	the	rectangle	is	15.0.

Once	I	told	the	script	that	the	length	of	the	rectangle	was	5	and	the	width	was
3,	the	script	told	me	that	the	area	was	15.0.

If	you	say	something	that	isn’t	a	number,	the	script	will	not	work.	It’s	safest	to
include	the	decimal	in	your	response	(for	example,	“five	point	zero”)	so	the
script	doesn’t	accidentally	convert	your	response	into	a	string	rather	than	a
number	type.

TRY	IT	YOURSELF

Run	area_hs.py	to	determine	the	area	of	a	rectangle	that	has	a	length	of	5.3	and	width	of
1.6.

Read	a	File	Aloud
In	this	section,	you’ll	learn	how	to	read	a	file	into	a	script	so	Python	can	speak
the	text	aloud.

Listing	4-8	contains	the	short	news	article	you’ll	use.

Storm	Dorian	likely	to	strengthen	into	hurricane

Thomson	Reuters

BY	BRENDAN	O'BRIEN	Aug	25th	2019	3:49PM

Tropical	Storm	Dorian	was	likely	to	strengthen	into	a	hurricane	

during	the	next	two	days	as	it	churned	westward	in	the	Caribbean	

Sea,	putting	Puerto	Rico,	the	Lesser	Antilles	and	the	Virgin	

Islands	on	alert,	forecasters	said	on	Sunday.

The	storm,	465	miles	(750	km)	east-southeast	of	Barbados,	packed	

40	mph	winds	as	it	headed	west	at	14	mph.	It	was	forecast	to	be	

near	the	central	Lesser	Antilles	late	on	Monday	or	early	Tuesday,	

the	National	Hurricane	Center	(NHC)	said	in	a	midday	advisory	on	

Sunday.

"Right	now,	it's	a	tropical	storm	and	we	are	expecting	it	to	

strengthen	close	to	or	reaching	hurricane	intensity	as	it	

approaches,"	NHC	meteorologist	Michael	Brennan	told	Reuters.

Dorian	was	expected	to	turn	toward	the	west-northwest	on	Monday	

and	continue	on	that	path	through	Tuesday	night,	the	NHC	said.

As	of	Sunday	afternoon,	Barbados	was	under	a	tropical	storm	

warning	while	a	tropical	storm	watch	was	in	effect	for	St.	Lucia	

and	St.	Vincent	and	the	Grenadines.

The	NHC	was	likely	to	issue	additional	watches	for	portions	of	

the	Windward	and	Leeward	Islands	on	Sunday,	Brennan	said,	noting	

that	Puerto	Rico,	the	Virgin	Islands	and	Hispaniola	should	

monitor	Dorian's	progress.

"We	are	approaching	the	peak	of	the	hurricane	season	so	everybody	

in	the	Caribbean	and	along	the	U.S.	South,	Gulf	and	East	Coast	

needs	to	be	aware	and	follow	these	systems,"	Brennan	said.	

Dorian's	winds	could	weaken	as	it	passes	south	of	Puerto	Rico	and	

approaches	Hispaniola.	Many	Caribbean	islands	are	likely	to	

receive	2	to	4	inches	(5	to	10	cm)	of	rain,	but	some	part	of	the

Lesser	Antilles	islands	could	get	6	inches,	the	NHC	said.

Listing	4-8:	Content	for	the	text	file

Including	this	article	as	is	in	a	script	would	clearly	be	inconvenient,	so	save	it
as	a	text	file	named	storm.txt	(you	can	download	storm.txt	with	the	rest	of	the
book’s	resources).	You	can	first	create	a	subfolder	called	files	in	your	chapter
folder	and	then	save	storm.txt	in	the	subfolder.

Save	Listing	4-9	as	newsfile.py	to	have	Python	read	the	news	article	out	loud.

#	Put	mysay.py	in	the	same	folder	as	this	script

from	mysay	import	print_say

import	pathlib

#	Open	the	file,	and	read	the	content	of	the	text	file

1	myfile	=	pathlib.Path.cwd()	/	'files'	/	'storm.txt'

with	open(myfile,'r')	as	f:

						content	=	f.read()

				

#	Let	Python	speak	the	text	in	the	file

print_say(content)

Listing	4-9:	Reading	out	the	text	file

You	first	let	the	script	know	where	to	find	the	news	file	1.	You	use	open()	to
access	storm.txt	from	the	subfolder	files.	You	then	read	the	content	of	the	file
into	a	string	variable	called	content	by	using	read().	At	the	end,	the	script	reads
the	file	content	out	loud	in	a	human	voice.	Simple!

If	you	save	storm.txt	in	the	same	folder	as	the	preceding	script,	you	don’t	need
to	specify	the	file	path.	Python	will	automatically	look	in	the	folder	the	script	is
held	in	when	a	path	is	not	specified.

TRY	IT	YOURSELF

Select	an	online	news	article	and	save	it	as	mynews.txt	on	your	computer.	Modify	newsfile.py
so	that	the	script	reads	the	news	article	out	loud	in	a	human	voice.

Summary
In	this	chapter,	you	learned	how	to	install	the	text-to-speech	module	to	make

Python	talk.	You	moved	crucial	text-to-speech	features	into	the	module	mysay	to
import	into	scripts.

You	have	also	learned	how	to	have	Python	repeat	what	you	say.	You	applied
your	new	skills	to	a	real-world	application:	using	voice	inputs	to	ask	Python	to
calculate	the	area	of	a	rectangle	and	tell	you	the	answer	in	a	human	voice.

Now	that	you	know	how	to	make	Python	talk	and	listen,	in	Chapter	5	you’ll
learn	how	to	apply	both	features	to	several	interesting	real-world	applications.

End-of-Chapter	Exercises
1.	 If	you	are	using	Windows,	in	pyttsx3_adjust.py,	modify	the	code	as	follows:

A.	 The	voice	is	a	male	voice.

B.	 The	speed	of	the	speech	is	160	words	per	minute.

C.	 The	volume	is	0.8.

2.	 Modify	the	script	area_hs.py	to	calculate	the	area	of	a	triangle	when	you	say
the	triangle’s	height	and	base	length.

5
SPEAKING	APPLICATIONS

Now	that	you	know	how	to	make	Python
talk	and	listen,	we’ll	create	several	real-
world	applications	that	utilize	those	skills.

But	before	that,	you’ll	create	a	local	package.	Since
you’ll	use	the	mysr	and	mysay	local	modules	in	every
chapter	for	the	reminder	of	the	book,	you’ll	create	a
Python	package	to	contain	all	local	modules.	This	way,
you	don’t	need	to	copy	and	paste	these	modules	to	the
folders	of	individual	chapters.	This	also	helps	keep	the
code	consistent	throughout	the	book.	You’ll	learn	how	a
Python	package	works	and	how	to	create	one	yourself
along	the	way.
In	the	first	application,	you’ll	build	a	Guess	the	Number	game	that	takes	voice

commands	and	talks	back	to	you	in	a	human	voice.

You’ll	then	learn	how	to	parse	text	to	extract	news	summaries	from	National
Public	Radio	(NPR)	and	have	Python	read	them	out	to	you.	You’ll	also	build	a
script	to	extract	information	from	Wikipedia	based	on	your	voice	inquiries	and	to
speak	the	answers	out.

Finally,	you’ll	learn	how	to	traverse	files	in	a	folder	with	your	voice,	with	the
aim	of	building	your	very	own	Alexa.	You’ll	be	able	to	say	to	the	script,
“Python,	play	Selena	Gomez,”	and	a	song	by	Selena	Gomez	that’s	saved	on	your
computer	will	start	playing.

As	usual,	you	can	download	all	the	code	for	all	the	scripts	from
https://www.nostarch.com/make-python-talk/.	Before	you	begin,	set	up	the	folder
/mpt/ch05/	for	this	chapter.

NEW	SKILLS

Learning	how	Python	packages	work

Creating	your	self-made	local	Python	package

Parsing	the	source	code	of	a	news	website	to	extract	news	summaries

Extracting	answers	to	your	queries	from	Wikipedia	and	converting	them	to	voice

Traversing	files	in	a	folder	on	your	computer	by	using	the	os	module

Create	Your	Self-Made	Local	Python	Package
In	Chapter	3,	you	built	a	self-made	local	module	mysr	to	contain	all	speech
recognition–related	code.	Whenever	you	need	to	use	the	speech-recognition
feature,	you	import	voice_to_text()	from	the	module.	Similarly,	you	built	a
self-made	local	module	mysay	in	Chapter	4	to	contain	all	text-to-speech-related
code.	You	import	print_say()	from	the	module	whenever	you	use	the	text-to-
speech	feature.

You’ll	use	these	two	self-made	local	modules	in	this	chapter	and	other
chapters	in	this	book.	To	make	these	modules	work,	you	need	to	put	the	module
files	(namely,	mysr.py	and	mysay.py)	in	the	same	directory	as	the	script	that	uses
these	two	modules.	This	means	you’d	potentially	have	to	copy	and	paste	these
files	into	the	directory	of	almost	every	chapter	in	this	book.	You	may	wonder:	is
there	a	more	efficient	way	to	do	this?

The	answer	is	yes,	and	that’s	what	Python	packages	are	for.

Next,	you’ll	first	learn	what	a	Python	package	is	and	how	it	works.	You’ll	then
learn	how	to	create	your	self-made	local	package.	Finally,	you’ll	use	a	Python
script	to	test	and	import	your	package.

What’s	a	Python	Package?
Many	people	think	that	Python	modules	and	Python	packages	are	the	same.
They’re	not.

https://www.nostarch.com/make-python-talk/

A	Python	module	is	a	single	file	with	the	.py	extension.	In	contrast,	a	Python
package	is	a	collection	of	Python	modules	contained	in	a	single	directory.	The
directory	must	have	a	file	named	__init__.py	to	distinguish	it	from	a	directory
that	happens	to	have	.py	extension	files	in	it.

I’ll	guide	you	through	the	process	of	creating	a	local	package	step-by-step.

Create	Your	Own	Python	Package
To	create	a	local	Python	package,	you	need	to	create	a	separate	directory	for	it
and	place	all	related	files	into	it.	In	this	section,	you’ll	create	a	local	package	to
contain	both	our	speech	recognition	and	text-to-speech	module	files—namely,
mysr.py	and	mysay.py.

Create	a	Package	Directory
First,	you	need	to	create	a	directory	for	the	package.

In	this	book,	you	use	a	separate	directory	for	each	chapter.	For	example,	all
Python	scripts	and	related	files	in	this	chapter	are	placed	in	the	directory
/mpt/ch05/.	Since	you	are	creating	a	package	to	be	used	for	all	chapters	in	this
book,	you’ll	create	a	directory	parallel	to	all	chapters.	Specifically,	you’ll	use	the
directory	/mpt/mptpkg/,	where	mptpkg	is	the	package	name.	The	diagram	in
Figure	5-1	explains	the	position	of	the	package	relative	to	the	book	chapters.

Figure	5-1:	The	position	of	the	mptpkg	package	relative	to	the	chapter	folders

As	you	can	see,	the	package	directory	is	parallel	to	the	chapter	directories,
which	are	all	contained	in	the	directory	for	the	book,	/mpt,	as	in	Make	Python
Talk.

Create	Necessary	Files	for	Your	Package
Next,	you	need	to	create	and	place	necessary	files	in	the	package.

First,	copy	and	paste	the	two	modules	you	created	in	Chapters	3	and	4,
mysr.py	and	mysay.py,	in	the	package	directory	/mpt/mptpkg/.	Do	not	make	any
changes	to	the	two	files.

Then	save	the	following	script,	__init__.py,	in	the	package	directory
/mpt/mptpkg/	(or	you	can	download	it	from	the	book’s	resources):

from	.mysr	import	voice_to_text

from	.mysay	import	print_say

The	purpose	of	this	file	is	twofold:	it	imports	voice_to_text()	and
print_say()	so	you	can	use	those	functions	at	the	package	level,	and	it	also	tells
Python	that	the	directory	is	a	package,	not	a	folder	that	happens	to	have	Python
scripts	in	it.

Finally,	save	the	following	script,	setup.py,	in	the	book	directory	/mpt,	one
level	above	the	package	directory	/mpt/mptpkg/.	The	script	is	also	available	from
the	book’s	resources.

from	setuptools	import	setup

setup(name='mptpkg',

version='0.1',

description='Install	local	package	for	Make	Python	Talk',

author='Mark	Liu',

author_email='mark.liu@uky.edu',

packages=['mptpkg'],

zip_safe=False)

The	file	provides	information	about	the	package,	such	as	the	package	name,
author,	version,	descriptions,	and	so	on.

You’ll	learn	how	to	install	this	local	package	on	your	computer	next.

Install	Your	Package
Because	you’ll	modify	the	local	package	and	add	more	features	to	it	later	in	the
book,	it’s	better	to	install	the	package	in	editable	mode.

Open	your	Anaconda	prompt	(Windows)	or	a	terminal	(Mac	or	Linux)	and
activate	your	virtual	environment	for	this	book,	chatting.	Run	the	following
command:

pip	install	-e	path-to-mpt

Replace	path-to-mpt	with	the	actual	directory	path	of	/mpt.	For	example,	the
book	directory	/mpt	is	C:\mpt	on	my	office	computer	that	runs	the	Windows
operating	system,	so	I	installed	the	local	package	using	this	command:

pip	install	-e	C:\mpt

On	my	Linux	machine,	the	path	to	the	/mpt	directory	is
/home/mark/Desktop/mpt,	so	I	installed	the	local	package	using	this	command:

pip	install	-e	/home/mark/Desktop/mpt

The	-e	option	tells	the	Python	to	install	the	package	in	editable	mode	so	that
you	can	modify	the	package	anytime	you	need	to.

With	that,	the	local	package	is	installed	on	your	computer.

Test	Your	Package
Now	that	you	have	installed	your	self-made	local	package,	you’ll	learn	how	to
import	it.

You’ll	write	a	Python	script	to	test	the	package	you	just	created.

Let’s	revisit	the	script	repeat_me1.py	from	Chapter	4.	Enter	the	following
lines	of	code	in	your	Spyder	editor	and	save	it	as	repeat_me2.py	in	your	Chapter
5	directory	/mpt/ch05/:

#	Import	functions	from	the	local	package	mptpkg

from	mptpkg	import	voice_to_text

from	mptpkg	import	print_say

while	True:

				print('Python	is	listening...')

				inp	=	voice_to_text()

				if	inp	==	"stop	listening":

								print_say(f'you	just	said	{inp};	goodbye!')

								break

				else:

								print_say(f'you	just	said	{inp}')

								continue

First,	import	the	functions	voice_to_text()	and	print_say()	from	the
mptpkg	package	directly.	Recall	that	in	the	script	__init__.py,	you’ve	already

imported	the	two	functions	from	the	modules	.mysr	and	.mysay	to	the	package.
As	a	result,	here	you	can	directly	import	the	two	functions	from	the	package.

The	rest	of	the	script	is	the	same	as	that	in	repeat_me1.py.	It	repeats	what	you
say.	If	you	say,	“Stop	listening,”	the	script	stops.

The	following	is	an	interaction	with	repeat_me2.py,	with	my	voice	input	in
bold:

Python	is	listening...

you	just	said	how	are	you

Python	is	listening...

you	just	said	I	am	testing	a	python	package

Python	is	listening...

you	just	said	stop	listening;	goodbye!	

As	you	can	see,	the	script	is	working	properly,	which	means	you’ve
successfully	imported	functions	from	the	local	package.

More	on	Python	Packages
Before	you	move	on,	I	want	to	mention	a	couple	of	things	about	Python
packages.

First,	you	can	add	more	modules	to	your	package.	Later	in	this	book,	you’ll
add	more	modules	to	the	existing	local	package	mptpkg.	You’ll	use	just	one	local
package	for	the	whole	book.	This	will	reduce	the	number	of	directories	and	help
organize	your	files.

Second,	if	you	have	an	interesting	package	that	you	want	to	share	with	the	rest
of	the	world,	you	can	easily	do	so.	You	just	need	to	add	a	few	more	files,	such	as
the	license,	a	README	file,	and	so	on.	For	a	tutorial	on	how	to	distribute	your
Python	packages,	see,	for	example,	the	Python	Packaging	Authority	website,
https://packaging.python.org/tutorials/packaging-projects/.

Interactive	Guess	the	Number	Game
Guess	the	Number	is	a	popular	game	in	which	one	player	writes	down	a	number
and	asks	the	other	player	to	guess	it	in	a	limited	number	of	attempts.	After	each
guess,	the	first	player	tells	whether	the	guess	is	correct,	too	high,	or	too	low.

Various	versions	of	the	game	are	available	online	and	in	books,	and	we’ll	look

https://packaging.python.org/tutorials/packaging-projects/

at	our	own	version	to	guess	a	number	between	one	and	nine.	Start	a	new	script
and	save	it	as	guess_hs.py;	the	hs	stands	for	hear	and	say.

Because	the	script	is	relatively	long,	I’ll	break	it	into	three	parts	and	explain
them	one	by	one.	Listing	5-1	gives	the	first	part.

1	import	time

import	sys

#	Import	functions	from	the	local	package	mptpkg

from	mptpkg	import	voice_to_text

from	mptpkg	import	print_say

#	Print	and	announce	the	rules	of	the	game	in	a	human	voice

2	print_say('''Think	of	an	integer,	

						bigger	or	equal	to	1	but	smaller	or	equal	to	9,

						and	write	it	on	a	piece	of	paper''')

print_say("You	have	5	seconds	to	write	your	number	down")

#	Wait	for	five	seconds	for	you	to	write	down	the	number

time.sleep(5)

print_say('''Now	let's	start.	I	will	guess	a	number	and	you	can	

say:	

				too	high,	that	is	right,	or	too	small''')

#	The	script	asks	in	a	human	voice	whether	the	number	is	5

print_say("Is	it	5?")

#	The	script	is	trying	to	get	your	response	and	save	it	as	re1

#	Your	response	has	to	be	'too	high',	'that	is	right',	or	'too	

small'

3	while	True:

				re1	=	voice_to_text()

				print_say(f"You	said	{re1}")

				if	re1	in	("too	high",	"that	is	right",	"too	small"):

								break

#	If	you	say	"that	is	right",	game	over

				if	re1	==	"that	is	right":

								print_say("Yay,	lucky	me!")

								sys.exit

--snip--

Listing	5-1:	Part	1	of	the	Guess	the	Number	game

We	start	the	script	by	importing	needed	modules	1.	We	import	the	time
module	so	we	can	pause	the	script	for	a	period	of	time.	We	also	import	the	sys
module	to	exit	the	script	when	it	is	finished.

As	discussed	in	the	previous	section,	we	import	voice_to_text()	and
print_say()	from	the	local	package	mptpkg	to	convert	voice	to	text	as	well	as
to	print	out	and	speak	the	text	message.

The	script	then	speaks	and	prints	out	the	rules	of	the	game	2.	Since	the
instructions	span	several	lines,	we	put	them	in	triple	quotation	marks	to	make
them	more	readable.

NOTE

When	you	have	text	that	spans	multiple	lines	and	you	want	to	print	it	or
convert	it	to	speech,	use	triple	quotation	marks;	for	example:

				print('''	Line	1	text,	

																	line	2	text,	

																	line	3	text''')

The	script	announces	that	you	have	five	seconds	to	write	down	a	number	then
pauses	for	five	seconds	by	using	sleep()	to	give	you	time	to	write	your	number.

The	script	then	begins	to	guess;	it	will	ask	in	a	human	voice	whether	the
number	is	five.	At	3,	we	start	an	infinite	loop	to	take	your	voice	input.	When
you	speak	into	the	microphone,	the	computer	converts	your	voice	input	into	a
text	string	variable	named	re1.	The	script	repeats	what	you	said	back	to	you.
Your	response	needs	to	be	one	of	three	phrases:	“too	high,”	“that	is	right,”	or
“too	small.”	If	it	isn’t,	the	script	will	keep	asking	you	for	a	response	until	it
matches	one	of	the	phrases.	This	gives	you	a	chance	to	have	a	correct	response
before	the	script	moves	on	to	the	next	step.

If	your	response	is	“that	is	right,”	the	computer	will	say,	“Yay,	lucky	me!”	and
exit	the	script.	We’ll	enter	the	behavior	for	the	response	“too	high”	next.	Listing
5-2	shows	the	middle	part	of	the	guess_hs.py	script.

--snip--

#	If	you	say	"too	high",	the	computer	keeps	guessing	

elif	re1	==	"too	high":

				#	The	computer	guesses	3	the	second	round

				print_say("Is	it	3?")

				#	The	computer	is	trying	to	get	your	response	to	the	second	

guess

				while	True:

								re2	=	voice_to_text()

								print_say(f"You	said	{re2}")

								if	re2	in	("too	high",	"that	is	right",	"too	small"):

												break

				#	If	the	second	guess	is	right,	game	over

				if	re2	==	"that	is	right":

								print_say("Yay,	lucky	me!")

								sys.exit

				#	If	the	second	guess	is	too	small,	the	computer	knows	it's	4

				elif	re2	==	"too	small":

								print_say("Yay,	it	is	4!")

								sys.exit

				#	If	the	second	guess	is	too	high,	the	computer	guesses	the	

third	time

				elif	re2	==	"too	high":

								#	The	third	guess	is	1

								print_say("Is	it	1?")

								#	The	computer	is	getting	your	response	to	the	third	

guess

								while	True:

												re3	=	voice_to_text()

												print_say(f"You	said	{re3}")

												if	re3	in	("too	high",	"that	is	right",	"too	small"):

																break

								#	If	the	third	guess	is	too	small,	the	computer	knows	

it's	2

								if	re3	==	"too	small":

												print_say("It	is	2!")

												sys.exit

								#	If	the	third	guess	is	right,	game	over

								elif	re3	==	"that	is	right":

												print_say("Yay,	lucky	me!")

												sys.exit

--snip--

Listing	5-2:	The	“too	high”	behavior

If	your	response	is	“too	high,”	the	computer	will	keep	guessing,	this	time	a
lower	number.	The	second	guess	from	the	computer	will	be	three	because
guessing	three	reduces	the	number	of	attempts	the	computer	needs	to	find	out	the
answer.	The	script	will	detect	and	catch	your	response	to	the	second	guess.

Here	are	the	options	for	your	response	to	the	second	guess:	If	it’s	“that	is
right,”	the	computer	will	say	“Yay,	lucky	me!”	and	exit	the	script.	If	it’s	“too

small,”	the	computer	will	know	that	the	number	is	four	and	say	so.	If	it’s	“too
high,”	the	computer	will	make	a	third	guess	of	one.

Then,	the	computer	captures	your	response	to	the	third	guess.	If	your	response
is	“too	small,”	the	computer	will	know	that	the	number	is	two.	If	your	response
is	“that	is	right,”	the	computer	will	say,	“Yay,	lucky	me!”	and	exit.

Now	let’s	look	at	the	final	section	of	guess_hs.py,	which	handles	a	“too	small”
response	to	the	first	guess.	Listing	5-3	shows	the	code.

--snip--

#	If	you	say	"too	small",	the	computer	keeps	guessing	

elif	re1	==	"too	small":

				#	The	computer	guesses	7	the	second	round

				print_say("Is	it	7?")

				#	The	computer	is	trying	to	get	your	response	to	the	second	

guess

				while	True:

								re2	=	voice_to_text()

								print_say(f"You	said	{re2}")

								if	re2	in	("too	high",	"that	is	right",	"too	small"):

												break

				#	If	the	second	guess	is	right,	game	over

				if	re2	==	"that	is	right":

								print_say("Yay,	lucky	me!")

								sys.exit

				#	If	the	second	guess	is	too	high,	the	computer	knows	it's	6

				elif	re2	==	"too	high":

								print_say("Yay,	it	is	6!")

								sys.exit

				#	If	the	second	guess	is	too	small,	the	computer	guesses	the	

third	time

				elif	re2	==	"too	small":

								#	The	third	guess	is	8

								print_say("Is	it	8?")

								while	True:

												re3	=	voice_to_text	()

												print_say(f"You	said	{re3}")

												if	re3	in	("too	high",	"that	is	right",	"too	small"):

																break

								#	If	the	third	guess	is	too	small,	the	computer	knows	

it's	9

								if	re3	==	"too	small":

												print_say("It	is	9!")

												sys.exit

								#	If	the	third	guess	is	right,	game	over

								elif	re3	==	"that	is	right":

												print_say("Yay,	lucky	me!")

												sys.exit

Listing	5-3:	The	“too	small”	behavior

The	final	section	of	the	script	is	similar	to	the	middle	section.	If	you	tell	the
computer	that	the	first	guess	of	five	is	“too	small,”	the	computer	will	give	you	a
second	guess	of	seven.	The	script	will	then	catch	your	response	to	the	second
guess.

If	you	respond	“that	is	right,”	the	computer	will	say,	“Yay,	lucky	me!”	and	exit
the	script.	If	you	say	“too	high,”	the	computer	will	know	that	the	number	is	six.
If	your	response	is	“too	small,”	the	computer	will	make	a	third	guess	of	eight.

The	computer	then	captures	your	response	to	the	third	guess.	If	your	response
is	“too	small,”	the	computer	will	know	that	the	number	is	nine.	If	your	response
is	“that	is	right,”	the	computer	will	say,	“Yay,	lucky	me!”	and	exit	the	script.

If	you	have	a	good	internet	connection	in	a	fairly	quiet	environment,	you	can
have	close-to-perfect	communication	with	the	computer.	The	internet	connection
is	important	because	we	use	the	Google	Web	Speech	API	to	convert	voice	input
into	text.	The	SpeechRecognition	module	has	an	offline	method	called
recognize_sphinx(),	but	it	makes	a	lot	of	mistakes,	so	we	use	the	online
method.

Here’s	the	written	output	from	the	script	when	my	number	was	8	(my	voice
input	is	in	bold):

Please	think	of	an	integer,

bigger	or	equal	to	1	but	smaller	or	equal	to	9,

and	write	on	a	piece	of	paper

You	have	5	seconds	to	write	it	down

Now	let's	start.	I	will	guess	a	number	and	you	can	say:

too	high,	that	is	right,	or	too	small

Is	it	5?

You	said	too	small

Is	it	7?

You	said	too	small

Is	it	8?

You	said	that	is	right

Yay,	lucky	me!

The	script	understood	every	word	I	said	perfectly.	This	is,	of	course,	partly

because	I	chose	certain	words	to	avoid	ambiguity.	When	building	your	own
projects,	you’ll	want	to	use	voice	commands	that	are	unique	or	put	the	words	in
context	to	get	consistently	correct	results.	Since	each	voice	command	is	usually
short,	the	Python	script	may	have	difficulty	grasping	the	context	of	your	voice
input	and	returning	the	right	words.

For	example,	if	you	say	“too	large”	into	the	microphone,	the	script	may	return
“two	large,”	which	is	a	phrase	that	does	make	sense.	That	is	why	we	use	“too
high”	instead	of	“too	large”	in	guess_hs.py.

Similarly,	when	I	spoke	“too	low”	into	the	microphone,	the	script	returned
“tulo”	from	time	to	time.	When	I	use	“too	small,”	I	get	the	correct	response	each
time.

TRY	IT	OUT

Run	guess_hs.py	and	play	a	few	rounds.	See	if	Python	can	understand	each	of	your
responses	on	the	first	try.

Speaking	Newscast
In	this	project,	we’ll	scrape	the	NPR	News	website	to	collect	the	latest	news
summary	and	have	Python	read	it	out	loud.	This	project	is	split	into	two	scripts:
one	to	scrape	and	organize	the	news,	another	to	handle	the	speech	recognition
and	text-to-speech	features.	Let’s	start	with	the	web	scraping.

Scrape	the	News	Summary
First,	we	need	to	scrape	the	information	from	the	news	site	and	compile	it	into	a
clean	and	readable	format.

Different	news	sites	arrange	their	content	differently,	so	the	methods	for
scraping	are	often	slightly	different.	You	can	refer	to	Chapter	6	for	the	basics	of
web	scraping.	If	you’re	interested	in	scraping	other	news	sites,	you’ll	need	to
adjust	this	code	based	on	the	features	of	the	website.	Let’s	first	look	at	the	site
and	the	corresponding	source	code.

The	news	we’re	interested	in	is	on	the	front	page	of	the	NPR	News	website,
shown	in	Figure	5-2.

One	handy	feature	of	this	page	is	the	short	news	summaries.	As	you	can	see,
the	front	page	lists	the	latest	news	with	a	short	summary	for	each	news	article.

You	want	to	extract	the	news	title	and	the	teaser	of	each	news	article	and	print
them	out.	To	do	this,	you	need	to	locate	the	corresponding	tags	in	the	HTML
program.

Figure	5-2:	News	summaries	on	the	NPR	News	front	page

While	on	the	web	page,	press	CTRL-U	on	your	keyboard.	The	source	code	for
the	web	page	should	appear.	You	can	see	that	it’s	almost	2,000	lines	long.	To
locate	the	tags	you	need,	press	CTRL-F	to	open	a	search	box	at	the	top-right
corner.	Because	the	title	of	the	first	news	article	starts	with	“Answering	Your
Coronavirus	Questions,”	as	shown	in	Figure	5-2,	you	should	enter	Answering
Your	Coronavirus	Questions	and	click	Search.	Then	skip	to	the	corresponding
HTML	code,	shown	in	Listing	5-4.

--snip--

1	<div	class="item-info">

				<div	class="slug-wrap">

				<h3	class="slug">

<a	href="https://www.npr.org/series/821003492/the-national-

conversation-with-

all-things-considered">The	National	Conversation	With	All	Things	

Considered

</h3>

				</div>

2	<h2	class="title">

<a	href="https://www.npr.org/2020/04/28/847585398/answering-your-

coronavirus-

questions-new-symptoms-economy-and-virtual-celebratio"	data-

metrics='{"action":"Click	Featured	Story	Headline	1-

3","category":"Aggregation"}'	>Answering	Your	Coronavirus	

Questions:	New	

Symptoms,	Economy	And	Virtual	Celebrations

</h2>

3	<p	class="teaser">

<a	href="https://www.npr.org/2020/04/28/847585398/answering-your-

coronavirus-

questions-new-symptoms-economy-and-virtual-celebratio"><time	

datetime="2020-

04-28">April	28,	2020	•	</time>On	

this	

broadcast	of	The	National	Conversation,	we	answer	your	

questions	

about	the	economy,	mental	health	and	new	symptoms	of	COVID-19.	

We'll	also	

look	at	how	people	are	celebrating	big	life	events.

</p>

</div>

--snip--

Listing	5-4:	Part	of	the	source	code	for	the	NPR	News	front	page

Notice	that	all	the	title	and	teaser	information	are	encapsulated	in	a	parent
<div>	tag	with	a	class	attribute	of	item-info	1.	Information	for	the	news	title
is	held	in	a	child	<h2>	tag	with	a	class	attribute	of	title	2.	The	information
for	the	teaser	is	held	in	a	child	<p>	tag	with	a	class	attribute	of	teaser	3.

We’ll	use	these	patterns	to	write	a	Python	script	to	extract	the	information	we
need.	The	script	news.py	will	scrape	the	information	and	organize	all	titles	and
summaries	in	a	clean	and	concise	way.	I’ve	added	comments	in	places	that	need
more	detailed	explanations.

The	script	will	compile	the	news	summary	and	print	it	out	in	text.	Enter
Listing	5-5	and	save	it	as	news.py.

#	Import	needed	modules

import	requests

import	bs4

#	Obtain	the	source	code	from	the	NPR	news	website

1	res	=	requests.get('https://www.npr.org/sections/news/')

res.raise_for_status()

#	Use	beautiful	soup	to	parse	the	code

soup	=	bs4.BeautifulSoup(res.text,	'html.parser')

#	Get	the	div	tags	that	contain	titles	and	teasers

div_tags	=	soup.find_all('div',class_="item-info")

#	Index	different	news

2	news_index	=	1

#	Go	into	each	div	tag	to	retrieve	the	title	and	the	teaser

3	for	div_tag	in	div_tags:

				#	Print	the	news	index	to	separate	different	news

				print(f'News	Summary	{news_index}')

				#	Retrieve	and	print	the	h2	tag	that	contains	the	title

				h2tag	=	div_tag.find('h2',	class_="title")

				print(h2tag.text)

				#	Retrieve	and	print	the	p	tag	that	contains	the	teaser

				ptag	=	div_tag.find('p',	class_="teaser")

				print(ptag.text)

				#	Limit	to	the	first	10	news	summaries

				news_index	+=	1

				if	news_index>10:

								break

Listing	5-5:	Python	code	to	scrape	the	NPR	News	front	page

We	start	by	importing	the	needed	modules	bs4	and	requests	(bs4	is	the	newest
version	of	the	Beautiful	Soup	library).	Follow	the	three	steps	in	Chapter	2	for
installing	these	modules	if	you	need	to.

At	1,	we	obtain	the	source	code	for	the	NPR	News	front	page,	which	is	in
HTML	format.	We	then	use	the	bs4	module	to	parse	HTML	files.	Because	the
information	we	need	is	encapsulated	in	<div>	tags	with	a	class	attribute	of
item-info,	we	find	all	such	tags	and	put	them	in	a	list	called	div_tags.	To
separate	different	news	summaries,	we	create	a	variable	news_index	to	mark
them	2.

We	then	go	into	each	individual	<div>	tag	we’ve	collected	3.	First,	we	print
out	the	news	summary	index	to	separate	out	individual	news	items.	Second,	we
extract	the	<h2>	tag	that	contains	the	news	title	and	print	it	out.	Third,	we	extract
the	<p>	tag	that	contains	the	news	summary	and	print	it	out.	Finally,	we	stop	if
the	news	index	exceeds	10	so	that	we	limit	the	printout	to	10	news	summaries.

If	you	run	news.py,	the	output	will	look	like	Listing	5-6.

News	Summary	1

Answering	Your	Coronavirus	Questions:	New	Symptoms,	Economy	And	

Virtual	Celebrations

April	28,	2020	•	On	this	broadcast	of	The	National	Conversation,	

we	answer	your	questions	

about	the	economy,	mental	health	and	new	symptoms	of	COVID-19.	

We'll	also	look	at	how	people	

are	celebrating	big	life	events.

News	Summary	2

More	Essential	Than	Ever,	Low-Wage	Workers	Demand	More

April	28,	2020	•	In	this	lockdown,	low-wage	workers	have	been	

publicly	declared	"essential"	—

up	there	with	doctors	and	nurses.	But	the	workers	say	their	pay,	

benefits	and	protections	

don't	reflect	it.

News	Summary	3

We	Asked	All	50	States	About	Their	Contact	Tracing	Capacity.	

Here's	What	We	Learned

April	28,	2020	•	To	safely	reopen	without	risking	new	COVID-19	

outbreaks,	states	need	enough	

staffing	to	do	the	crucial	work	of	contact	tracing.	We	surveyed	

public	health	agencies	to	

find	out	how	much	they	have.

News	Summary	4

Coronavirus	Has	Now	Killed	More	Americans	Than	Vietnam	War

April	28,	2020	•	The	number	of	lives	taken	by	COVID-19	in	the	

U.S.	has	reached	a	grim	

milestone:	More	people	have	died	of	the	disease	than	the	58,220	

Americans	who	perished	in	the	

Vietnam	War.

--snip--

Listing	5-6:	News	summary	scraped	from	the	NPR	News	front	page

Now	we’ll	get	Python	to	read	the	news	to	us.

Add	the	Text-to-Speech	Features
The	next	step	is	to	have	the	text-to-speech	module	convert	the	news	summary
into	spoken	words.	Add	Listing	5-7	into	a	new	file	and	save	it	as	news_hs.py.

#	Import	needed	modules

import	requests

import	bs4

import	sys

#	Import	functions	from	the	local	package	mptpkg

from	mptpkg	import	voice_to_text

from	mptpkg	import	print_say

#	Define	the	news_teaser()	function

1	def	news_teaser():

				--snip--

						2	print_say(f'News	Summary	{news_index}')

								h2tag	=	div_tag.find('h2',	class_="title")

								print_say(h2tag.text)

								ptag	=	div_tag.find('p',	class_="teaser")

								print_say(ptag.text)

								--snip--

#	Print	and	ask	you	if	you	like	to	hear	the	news	summary

print_say("Would	you	like	to	hear	the	NPR	news	summary?")

#	Capture	your	voice	command

inp	=	voice_to_text().lower()

#	If	you	answer	yes,	activate	the	newscast

if	inp	==	"yes":

				news_teaser()

#	Otherwise,	exit	the	script

else:	

				sys.exit

Listing	5-7:	Python	code	for	a	voice-activated	newscast

We	first	import	the	usual	modules,	and	we	import	voice_to_text()	and
print_say()	from	the	self-made	mptpkg	package.

We	then	define	a	function	called	news_teaser()	1,	which	accomplishes
whatever	news.py	does.	The	only	exception	is	that	instead	of	just	printing	out	the
news	index,	title,	and	teaser,	it	both	prints	and	speaks	them	2.	We	then	set	the
script	to	ask,	“Would	you	like	to	hear	the	NPR	news	summary?”	The
voice_to_text()	function	captures	your	voice	response	and	converts	it	into	a
string	variable	with	all	lowercase	letters.	If	you	say	yes,	Python	will	start

broadcasting	the	news.	If	you	answer	anything	other	than	yes,	the	script	will	exit.

TRY	IT	OUT

Run	news_hs.py	and	hear	news	from	NPR.	To	save	time,	modify	the	script	so	that	you’ll	hear
only	the	first	5	news	summaries	instead	of	10.

Voice-Controlled	Wikipedia
We’ll	build	a	talking	Wikipedia	in	this	section.	Unlike	with	the	newscaster
project,	we’ll	use	the	wikipedia	module	to	get	the	information	we	need	directly.
After	that,	we’ll	get	the	script	to	understand	questions	you	ask,	retrieve	the
answer,	and	read	it	aloud.

Access	Wikipedia
Python	has	a	wikipedia	module	that	does	the	work	of	delving	into	topics	you
want	to	know	about,	so	we	don’t	have	to	code	that	part	ourselves.	The	module	is
not	in	the	Python	standard	library	or	the	Anaconda	navigator.	You	should	install
it	with	pip.	Open	the	Anaconda	prompt	(in	Windows)	or	a	terminal	(in	Mac	or
Linux)	and	run	the	following	command:

pip	install	wikipedia

Next,	run	the	following	script	as	wiki.py:

import	wikipedia

my_query	=	input("What	do	you	want	to	know?\n")

answer	=	wikipedia.summary(my_query)

print(answer)

After	the	script	is	running,	in	the	IPython	console	in	the	lower-right	panel,
enter	the	name	of	a	topic	you	want	to	know	about.	The	script	will	save	your
inquiry	as	the	variable	my_query.	The	summary()	function	will	produce	a
summary	answer	to	your	question.	Finally,	the	script	prints	out	the	answer	from
Wikipedia.

I	entered	U.S.	China	trade	war	and	got	the	following	result:

What	do	you	want	to	know?	

U.S.	China	trade	war

China	and	the	United	States	have	been	engaged	in	a	trade	war	

through	increasing	tariffs	and	other	measures	since	2018.	Hong	

Kong	economics	professor	Lawrence	J.	Lau	argues	that	a	major	

cause	is	the	growing	battle	between	China	and	the	U.S.	for	global	

economic	and	technological	dominance.	He	argues,	"It	is	also	a	

reflection	of	the	rise	of	populism,	isolationism,	nationalism	and	

protectionism	almost	everywhere	in	the	world,	including	in	the	

US."

This	answer	is	relatively	short.	Most	searches	in	Wikipedia	will	have	a	much
longer	result.	If	you	want	to	limit	the	length	of	the	responses	to,	say,	the	first	200
characters,	you	can	enter	[0:200]	after	answer.

Add	Speech	Recognition	and	Text	to	Speech
We’ll	now	add	the	speech	recognition	and	text-to-speech	features	to	the	script.
Enter	Listing	5-8	as	wiki_hs.py.

import	wikipedia

#	Import	functions	from	the	local	package	mptpkg

from	mptpkg	import	voice_to_text

from	mptpkg	import	print_say

#	Ask	what	you	want	to	know

1	print_say("What	do	you	want	to	know?")

#	Capture	your	voice	input

2	my_query	=	voice_to_text()

print_say	(f"you	said	{my_query}")

#	Obtain	answer	from	Wikipedia

ans	=	wikipedia.summary(my_query)

#	Say	the	answer	in	a	human	voice

print_say(ans[0:200])

Listing	5-8:	Python	code	for	a	voice-controlled	talking	Wikipedia

Once	you	start	the	script,	a	voice	asks,	“What	do	you	want	to	know?”	1.	At
2,	the	script	calls	voice_to_text()	to	convert	your	voice	input	into	text.	Then,
the	script	retrieves	the	response	to	your	question	from	Wikipedia,	saves	it	as	a
string	variable	ans,	and	converts	it	to	a	human	voice.

After	running	the	script,	if	you	say	to	the	microphone,	“US	Federal	Reserve
Bank,”	you’ll	get	a	result	similar	to	this:

What	do	you	want	to	know?	

you	said	U.S.	federal	reserve	bank	

The	Federal	Reserve	System	(also	known	as	the	Federal	Reserve	or	

simply	the	

Fed)	is	the	central	banking	system	of	the	United	States	of	

America.	It	was	

created	on	December	23,

1913,	with	the	enactment

I’ve	added	the	[0:200]	character	limit	behind	the	variable	ans,	so	only	the
first	200	characters	of	the	result	are	printed	and	spoken.

And	just	like	that,	you	have	your	own	voice-controlled	talking	Wikipedia.	Ask
away!

TRY	IT	OUT

Run	wiki_hs.py	and	ask	Wikipedia	about	the	city	you	live	in	now	(or	the	state	if	the	city	is	not
in	Wikipedia).	See	what	the	output	is	like.

Voice-Activated	Music	Player
Here	you’ll	learn	how	to	get	Python	to	play	a	certain	artist	or	genre	of	music	just
by	asking	for	it	with	a	phrase	like	“Python,	play	Selena	Gomez.”	You’ll	speak
the	name	of	the	artist	you	want	to	listen	to,	and	the	script	will	receive	that	as
keywords	and	then	search	for	those	keywords	in	a	particular	folder.	To	do	this,
you	need	to	be	able	to	traverse	files	and	folders.

Traverse	Files	in	a	Folder
Suppose	you	have	a	subfolder	chat	in	your	chapter	folder.	If	you	want	to	list	all
files	in	the	subfolder,	you	can	use	this	traverse.py	script:

import	os

with	os.scandir("./chat")	as	files:

				for	file	in	files:

								print(file.name)

First,	the	script	imports	the	os	module.	This	module	gives	the	script	access	to
functionalities	that	are	dependent	on	the	operating	system,	such	as	accessing	all
files	in	a	folder.

Next,	you	put	all	files	in	the	subfolder	chat	into	a	list	called	files.	The	script
goes	through	all	items	in	the	list,	and	prints	out	the	name	of	each	item.

The	output	from	the	preceding	script	is	as	follows	after	I	run	it	on	my
computer:

book.xlsx	

desk.pdf	

storm.txt	

graduation.pptx

--snip--

HilaryDuffSparks.mp3	

country

classic

lessons.docx

SelenaGomezWolves.mp3

TheHeartWantsWhatItWantsSelenaGomez.mp3

As	you	can	see,	we	can	traverse	all	the	files	and	subfolders	in	a	folder	and
print	out	their	names.	Filenames	include	the	file	extension.	Subfolders	have	no
extension	after	the	subfolder	name.	For	example,	I	have	two	folders,	country	and
classic,	in	the	folder	chat.	As	a	result,	you	see	country	and	classic	in	the
preceding	output.

Next,	you’ll	use	this	feature	to	select	a	song	you	want	to	play.

Python,	Play	Selena	Gomez
The	script	in	Listing	5-9,	play_selena_gomez.py,	can	pick	out	a	song	by
whatever	artist	you	name	(for	example,	Selena	Gomez)	and	play	it.	Either	save
your	songs	in	the	subfolder	chat	or	replace	the	file	path	with	a	path	to
somewhere	on	your	computer	that	you	keep	music.

#	Import	the	required	modules

import	os

import	random

from	pygame	import	mixer

#	Import	functions	from	the	local	package	mptpkg

from	mptpkg	import	voice_to_text

from	mptpkg	import	print_say

#	Start	an	infinite	loop	to	take	your	voice	commands

1	while	True:

				print_say("how	may	I	help	you?")

				inp	=	voice_to_text()

				print_say(f"you	just	said	{inp}")

				#	Stop	the	script	if	you	say	'stop	listening'

				if	inp	==	"stop	listening":

								print_say("Goodbye!	")

								break

				#	If	'play'	is	in	voice	command,	music	mode	is	activated

		2	elif	"play"	in	inp:

								#	Remove	the	word	play	from	voice	command

						3	inp	=	inp.replace('play	','')

								#	Separate	first	and	last	names

								names	=	inp.split()

								#	Extract	the	first	name

								Firstname	=	names[0]

								#	Extract	the	last	name

								if	len(names)>1:

												lastname	=	names[1]

								#	If	no	last	name,	use	the	first	name	as	last	name;		

								else:

												lastname	=	firstname

								#	Create	a	list	to	contain	songs	

								mysongs	=	[]

								#	If	either	first	name	or	last	name	in	the	file	name,	put	

in	list

								with	os.scandir("./chat")	as	files:

												for	file	in	files:

										4	if	(firstname	in	file.name	or	lastname	in	file.name)	

\

and	"mp3"	in	file.name:

																mysongs.append(file.name)

								#	Randomly	select	one	from	the	list	and	play

						5	mysong	=	random.choice(mysongs)

								print_say(f"play	the	song	{mysong}	for	you")

								mixer.init()

								mixer.music.load(f'./chat/{mysong}')

								mixer.music.play()

								break

Listing	5-9:	Python	code	to	voice	activate	a	song	by	an	artist	on	your
computer

We	first	import	the	needed	modules.	In	particular,	we	import	the	os	module	to
traverse	files	and	the	random	module	to	randomly	select	a	song	from	a	list	the
script	will	build.	We	use	mixer()	in	the	pygame	module	to	play	the	music	file.

We	then	start	an	infinite	loop	1	to	put	the	script	in	standby	mode	to	wait	for
your	voice	commands.	If	the	script	detects	the	word	play	in	your	voice
command,	the	music	mode	is	activated	2.	We	then	replace	the	word	play	and
the	whitespace	behind	it	with	an	empty	string	3	so	that	your	command	“Play
Selena	Gomez”	becomes	Selena	Gomez.	The	next	command	separates	the	first
name	and	the	last	name.	For	artists	who	are	known	by	just	their	first	names	(such
as	Madonna,	Prince,	or	Cher),	we	put	their	first	name	as	a	placeholder	in	the
variable	lastname.

We	then	traverse	through	all	files	in	the	subfolder	chat.	If	a	file	has	the	mp3
extension	and	contains	either	the	first	or	the	last	name	4,	it	will	be	added	to	the
list	mysongs.	We	use	choice()	from	the	random	module	to	randomly	select	a
song	in	the	list	mysongs	5	and	load	it	with	mixer.music.load().	After	that,	we
use	mixer.music.play()	to	play	it.

As	a	result,	once	you	say	to	the	script,	“Play	Selena	Gomez,”	one	of	the	two
songs	in	the	subfolder	chat,	SelenaGomezWolves.mp3	or
TheHeartWantsWhatItWantsSelenaGomez.mp3,	will	start	playing.

NOTE

We	use	the	pygame	module	to	play	music	files	in	this	book.	Depending
on	which	operating	system	you	are	using,	other	modules,	such	as
playsound	or	vlc,	can	also	play	music	files	in	Python.	Alternatively,	you
can	use	os.system()	to	open	music	files	in	your	computer’s	default
music	player,	as	discussed	in	Chapter	3.

TRY	IT	OUT

Save	several	songs	by	your	favorite	artist,	making	sure	that	the	filenames	contain	the	artist’s
first	and	last	name.	Then	edit	and	run	play_selena_gomez.py	so	that	when	you	say,	“Python,

play	Firstname	Lastname,”	one	of	your	songs	will	start	playing.

Python,	Play	a	Country	Song
What	we’ll	do	now	is	similar	to	interacting	with	the	script
play_selena_gomez.py,	but	here	you’ll	learn	how	to	access	different	subfolders
by	using	the	os	module	as	well	as	a	different	way	of	playing	music	files.

Suppose	you’ve	organized	your	songs	by	genre.	You	put	all	classical	music
files	in	the	subfolder	classic,	and	all	country	music	files	in	the	folder	country,
and	so	on.	You’ve	placed	these	subfolders	in	the	folder	chat	you	just	created.

We	want	to	write	a	script	so	that	when	you	say,	“Python,	play	a	country	song,”
the	script	will	randomly	select	a	song	from	the	folder	country	and	play	it.	Enter
the	code	in	Listing	5-10	and	save	it	as	play_genre.py.

#	Import	needed	modules

import	os

import	random

from	pygame	import	mixer

#	Import	functions	from	the	local	package	mptpkg

from	mptpkg	import	voice_to_text

from	mptpkg	import	print_say

while	True:

				print_say("how	may	I	help	you?")

				inp	=	voice_to_text().lower()

				print_say(f'you	just	said	{inp}')

				if	inp	==	"stop	listening":

								print_say('Goodbye!')

								break

				elif	"play	a"	in	inp	and	"song"	in	inp:

								#	Remove	'play	a'	and	'song'	so	that	only	the	genre	name	

is	left

						1	inp	=	inp.replace('play	a	','')

						2	inp	=	inp.replace('	song','')

								#	Go	to	the	genre	folder	and	randomly	select	a	song

								with	os.scandir(f"./chat/{inp}")	as	entries:

												mysongs	=	[entry.name	for	entry	in	entries]

								#	Use	pygame	mixer	to	play	the	song

						3	mysong	=	random.choice(mysongs)

								print_say(f"play	the	song	{mysong}	for	you")

								mixer.init()

								mixer.music.load(f"./chat/{inp}/{mysong}")

								mixer.music.play()

								break

Listing	5-10:	Python	code	to	voice	activate	a	song	by	genre

Python	checks	for	the	terms	play	a	and	song	in	the	voice	command	and
activates	the	music	mode	if	it	finds	them.	The	script	then	replaces	play	a	1	and
song	2	as	well	as	the	whitespace	behind	them	with	an	empty	string,	leaving
only	the	genre—country,	in	this	case—in	the	voice	command.	This	is	used	as
the	folder	for	the	script	to	search:	in	this	case,	./chat/country.	Finally,	the	script
randomly	selects	a	song	from	the	folder	3	and	plays	it.

Note	that	we	use	lower()	after	voice_to_text()	in	the	script	so	that	the
voice	command	is	all	lowercase.	We	do	this	because	the	script	sometimes
converts	the	voice	command	into	play	A	Country	Song.	We	can	avoid
mismatch	due	to	capitalization.	On	the	other	hand,	the	path	and	filenames	are	not
case	sensitive,	so	even	if	you	have	capital	letters	in	your	path	or	filenames,	there
will	not	be	any	mismatch.

TRY	IT	OUT

Organize	your	music	into	various	categories.	Save	a	few	songs	in	the	subfolder	classic	in	the
chat	folder	you	created.	If	you	say,	“Play	a	classic	song,”	see	if	a	song	in	the	folder	will	start
playing.

Summary
In	this	chapter,	you	first	learned	to	create	a	Python	package	to	contain	the	local
text-to-speech	and	speech	recognition	modules.	After	that,	you	built	several	real-
world	applications	that	can	understand	voice	commands,	react,	and	speak.

You	created	a	voice-controlled,	talking	Guess	the	Number	game.	In	the	game,
you	pick	a	number	between	one	and	nine	and	interact	with	the	script	to	let	it
guess.	Then	you	learned	how	to	parse	text	to	extract	a	news	summary	from	the
NPR	website,	adding	the	speech	recognition	and	text-to-speech	features	to	make
a	voice-controlled	newscast.

You	learned	how	to	use	the	wikipedia	module	to	obtain	answers	to	your
inquiries.

You	traversed	files	in	a	folder	on	your	computer	by	using	the	os	module,	and
then	created	a	script	that	plays	a	genre	or	artist	when	you	ask	it	to.

Now	that	you	know	how	to	make	Python	talk	and	listen,	you’ll	apply	both
features	to	many	other	interesting	situations	throughout	the	rest	of	the	book	so
that	you	can	interact	with	your	computer	via	voice	only.

End-of-Chapter	Exercises
1.	 Modify	guess_hs.py	so	that	the	third	guess	of	the	script	is	two	instead	of	one.

2.	 Change	wiki.py	so	that	it	prints	out	the	first	300	characters	of	the	result	from
Wikipedia.

3.	 Modify	play_genre.py	so	that	the	script	plays	music	by	using	the	os	module
and	your	default	music	player	on	your	computer,	instead	of	the	pygame
module.

4.	 Suppose	the	music	files	on	your	computer	are	not	in	MP3	format	but	in	WAV
format.	How	can	you	modify	play_selena_gomez.py	so	that	the	script	still
works?

6
WEB	SCRAPING	PODCASTS,	RADIOS,

AND	VIDEOS

In	this	chapter,	you’ll	build	on	the	web-
scraping	basics	from	Chapter	5.	You’ll	use
these	skills	to	voice-activate	podcasts,	live

radio	broadcasts,	and	videos	on	different	websites.
You’ll	also	learn	how	HyperText	Markup	Language	(HTML)	works	and	how

the	various	types	of	HTML	tags	construct	web	pages.	You’ll	learn	how	to	use
Python’s	Beautiful	Soup	library	to	parse	HTML	files	and	extract	information.

With	all	these	skills,	you’ll	build	three	apps	to	do	the	following:

Parse	the	source	file	of	online	podcasts,	locate	an	MP3	file,	and	play	the
podcast.

Use	voice	control	to	play	online	live	radio.

Play	online	videos,	such	as	NBC’s	Nightly	News	with	Lester	Holt.

Before	you	begin,	set	up	the	folder	/mpt/ch06/	for	this	chapter.	As	usual,	you
can	download	all	the	code	for	all	the	scripts	from
https://www.nostarch.com/make-python-talk/.

NEW	SKILLS

Learning	how	various	HTML	tags	work

Parsing	an	HTML	file	and	extracting	information	from	it

https://www.nostarch.com/make-python-talk/

Using	the	pygame	module	to	pause	or	stop	an	audio	file	while	it’s	playing

Using	the	selenium	module	to	control	websites,	online	podcasts,	and	online	videos

Accessing	an	online	radio	station

A	Primer	on	Web	Scraping
The	Beautiful	Soup	library	is	designed	to	extract	information	from	websites.
We’ll	use	it	often	in	this	book,	just	as	many	Python	programmers	do	in	the	real
world.

I’ll	first	discuss	the	basics	of	HTML	markup	and	how	different	types	of	tags
form	various	blocks	on	a	website.	You’ll	then	learn	to	use	the	Beautiful	Soup
library	to	extract	information	from	websites	by	parsing	their	source	code.

What	Is	HTML?
As	noted	at	the	start	of	the	chapter,	HTML	stands	for	HyperText	Markup
Language,	the	programming	language	that	tells	browsers	how	to	construct	and
display	web	page	content.	HTML	uses	various	types	of	tags	to	build	the	structure
of	web	pages.

Anatomy	of	an	HTML	Tag
Table	6-1	lists	some	of	the	commonly	used	tags	and	their	main	functions.

Table	6-1:	Commonly	Used	HTML	Tags

Tag	name Description

<html> The	root-level	tag	of	an	HTML	document.	It	encapsulates	all	other	HTML	tags.

<head> The	head	section	of	an	HTML	document	that	contains	metadata	about	the	page.

<title> The	title	of	the	web	page,	to	be	displayed	on	the	tab	of	the	browser.

<body> The	body	of	an	HTML	document,	with	all	displayed	content.

<h1> A	level-1	heading,	for	example,	the	title	of	a	news	article.

<p> A	paragraph	of	displayed	content.

<div> A	container	used	for	page	elements	that	divide	the	HTML	document	into	sections.

<a> A	hyperlink	to	link	one	page	to	another.

 A	list	item.

All	tags	start	with	<	>	and	end	with	</	>	so	that	the	browser	can	identify
separate	tags.	For	example,	paragraph	tags	start	with	<p>	and	close	with	</p>.

NOTE

A	complete	list	of	all	HTML	tags	and	their	uses	can	be	found	at
https://html.spec.whatwg.org/multipage/.

Let’s	use	<a>	to	illustrate	the	components	of	HTML	tags.	Here’s	an	example
of	creating	a	hyperlink	by	using	an	<a>	tag:

<a	class="suprablue"	

href="http://libraries.uky.edu">Libraries

This	hyperlink	has	optional	attributes	in	the	opening	tag:	.	The	class	attribute
tells	the	browser	which	style	to	use	from	the	Cascading	Style	Sheets	(CSS),
where	the	class	name	suprablue	is	predefined	(you’ll	learn	how	to	define	a	class
in	the	following	section).	The	href	attribute	specifies	the	destination	of	the
hyperlink,	http://libraries.uky.edu/.	The	content	of	the	tag	that	will	be	displayed
on	the	page	is	between	the	opening	and	closing	tags:	Libraries.

From	HTML	Tags	to	Web	Pages
To	understand	how	HTML	uses	tags	to	construct	a	web	page,	let’s	look	at	an
extremely	simplified	example.	Enter	the	script	in	Listing	6-1	and	save	it	as
UKYexample.html	in	your	chapter	folder,	or	you	can	download	the	file	from	the
book’s	resources	page.	All	HTML	files	need	the	extension	.html	or	.htm.

		1	<html>	

						<head>	

				<title>Example:	University	of	Kentucky</title>

<style>

.redtext	{

		color:	red;

}

.leftmargin	{

		margin-left:	10px;

}

</style>

https://html.spec.whatwg.org/multipage/
http://libraries.uky.edu/

		</head>

		2	<body>	

				<p>Below	are	some	links:</p>

						<p>

						University	of	Kentucky	Libraries</p>	

						<p>

						University	of	Kentucky	Directory</p>	

		</body>

</html>

Listing	6-1:	HTML	code	for	a	simple	web	page

Before	I	explain	the	code,	let’s	see	how	the	actual	web	page	looks.	Go	to	your
chapter	folder	and	open	UKYexample.html	with	your	preferred	web	browser.	I
use	Google	Chrome,	and	the	web	page	comes	out	as	in	Figure	6-1.

Figure	6-1:	A	simple	web	page

Now	let’s	link	the	HTML	code	to	the	web	page	display.

At	1,	we	start	an	opening	<html>	tag	to	contain	all	the	code	in	the	script.
Then,	we	have	a	<title>	tag	nested	in	a	<head>	tag.	The	<head>	tag	is	usually
used	to	contain	metadata,	such	as	the	document	title	or	CSS	styles.	The	content
of	the	<title>	tag	is	Example:	University	of	Kentucky,	which	sets	the	title	of
the	web	page	shown	in	the	browser	tab	at	the	top-left	corner	in	Figure	6-1.

The	content	inside	the	<style>	tag	is	to	define	two	classes:	redtext	and
leftmargin.	The	first	one	tells	the	HTML	to	display	the	content	in	red,	while	the
second	tells	the	HTML	to	leave	a	10-pixel	left	margin.	You	can	specify	multiple
styles	such	as	background	color,	padding,	or	margins	in	one	class.

At	2,	we	start	the	body	HTML	that	will	be	displayed	on	the	page.	Inside	this
we	have	three	nested	<p>	tags.	A	<p>	tag	defines	a	separate	paragraph	in	an
HTML	document;	adding	a	new	<p>	tag	starts	a	new	paragraph.	The	first	<p>	tag
contains	the	message	Below	are	some	links:.

We	then	provide	two	hyperlinks,	each	in	in	an	<a>	tag	nested	in	a	<p>	tag.	We
put	each	<a>	tag	in	a	separate	<p>	tag	so	the	links	are	displayed	as	two	different
paragraphs	instead	of	side	by	side	on	the	same	line.	If	you	click	the	first	link,	it
will	bring	you	to	the	University	of	Kentucky	Libraries.	If	you	click	the	second
link,	you’ll	be	directed	to	the	University	of	Kentucky	Directory.	The	first	tag	has
a	class	attribute	of	redtext,	displaying	the	text	in	red,	as	defined	in	the	<style>
tag	previously.	Similarly,	the	second	tag	has	a	class	attribute	of	leftmargin,	and
as	a	result,	a	10-pixel	margin	precedes	the	text	University	of	Kentucky
Library.

Extract	Information	with	Beautiful	Soup
Now	that	you	understand	how	a	few	basic	HTML	tags	work,	you’ll	use	the
Beautiful	Soup	library	to	parse	the	HTML	code	and	extract	the	information	you
want.	I’ll	first	discuss	how	to	parse	a	locally	saved	HTML	file.	Then	you’ll	learn
how	to	extract	information	from	a	live	web	page.

Let’s	revisit	the	simple	example	UKYexample.html	saved	in	your	chapter
folder.	Suppose	you	want	to	extract	some	web	addresses	from	a	web	page.	You
can	use	Listing	6-2,	parse_local.py,	to	accomplish	the	task.

#	Import	the	Beautiful	Soup	library

from	bs4	import	BeautifulSoup

#	Open	the	local	HTML	file	as	a	text	file

1	textfile	=	open("UKYexample.html",	encoding='utf8')

#	Use	the	findAll()	function	to	locate	all	<p>	tags

soup	=	BeautifulSoup(textfile,	"html.parser")

ptags	=	soup.findAll("p")

#	Print	out	<p>	tags

print(ptags)

#	Find	the	<a>	tag	nested	in	the	third	<p>	tag

2	atag	=	ptags[2].find('a')

print(atag)

#	Print	the	web	address	of	the	hyperlink

print(atag['href'])

#	Print	the	content	of	the	<a>	tag

print(atag.text)

Listing	6-2:	Parsing	a	local	HTML	file

First,	we	import	BeautifulSoup()	from	the	bs4	module,	the	latest	version	of
Beautiful	Soup.	At	1,	we	open	the	local	HTML	file	as	a	text	file	by	using	the
built-in	Python	function	open().	We	then	use	findAll()	to	locate	all	<p>	tags	in
the	HTML	file,	and	we	put	them	in	the	list	ptags.

NOTE

Listing	6-2	assumes	you’ve	put	the	file	UKYexample.html	in	the	same
folder	as	the	script	parse_local.py.	If	the	file	is	elsewhere,	you	must
specify	its	path	at	1.

There	are	three	<p>	tags	in	the	list	ptags:

[<p>Below	are	some	links:</p>,	

<p>

University	of	Kentucky	Libraries</p>,	

<p>

University	of	Kentucky	Directory</p>]

Let’s	use	the	third	tag	as	an	example.	At	2,	we	locate	the	<a>	tag	nested	in
the	third	<p>	tag.	We	then	print	out	the	href	attribute	of	the	<a>	tag:

https://directory.uky.edu/

Finally,	we	print	out	the	content	of	the	<a>	tag:

University	of	Kentucky	Directory

The	output	for	the	whole	script	is	as	follows:

[<p>Below	are	some	links:</p>,	

<p>

University	of	Kentucky	Libraries</p>,	

<p>

University	of	Kentucky	Directory</p>]

University	of	Kentucky	Directory

https://directory.uky.edu/

University	of	Kentucky	Directory

Scrape	Live	Web	Pages
Now	let’s	scrape	a	live	web	page.	The	HTML	markup	for	a	live	web	page	is
much	more	complicated	than	our	simple	static	version	and	might	be	thousands	of
lines	long,	so	you’ll	need	to	learn	to	quickly	locate	the	lines	of	code	you	want.

Suppose	you	want	to	extract	the	contact	information	from	the	University	of
Kentucky	Libraries	website.	Go	to	http://libraries.uky.edu/.	Then	scroll	to	the
bottom	of	the	page	and	you’ll	see	the	contact	information	for	various	areas,	as
shown	in	Figure	6-2.

Figure	6-2:	Information	you	want	from	a	live	web	page

You	want	to	extract	the	department	name,	phone	number,	and	email	address
for	each	of	the	three	departments	shown	in	Figure	6-2:	Circulation,	Reference,
and	Interlibrary	Loan.	First	you	need	to	locate	the	corresponding	tags	in	the
HTML	document.

While	on	the	web	page,	press	CTRL-U	on	your	keyboard	(or	right-click	and
choose	View▶Source).	The	source	code	for	the	web	page	should	appear.	You
can	see	that	it’s	more	than	2,000	lines	long.	To	locate	the	tags	you	need,	press
CTRL-F	to	access	a	search	box	at	the	top-right	corner.	Enter	Circulation	and
click	Search	to	skip	to	the	corresponding	HTML	code,	shown	in	Listing	6-3.

--snip--

1	<div	class="sf-middle">	

												2	<div	class="dashing-li">	

										Circulation:

										

														<div	class="contact_phone"><a	class="suprablue"

http://libraries.uky.edu/

															href="tel:8592181881">(859)	218-1881</div>

														<div	class="contact_email"><a	class="suprablue"

															href="mailto:lib.circdesk@email.uky.edu">

															lib.circdesk@email.uky.edu</div>

										

						</div>

				3	<div	class="dashing-li">	

										Reference:

										

														<div	class="contact_phone"><a	class="suprablue"	

															href="tel:8592182048">(859)	218-2048</div>

														<div	class="contact_email"><a	class="suprablue"	

															href="mailto:refdesk@uky.edu">refdesk@uky.edu

</div>

										

						</div>

				4	<div	class="dashing-li">	

										Interlibrary	Loan:

										

														<div	class="contact_phone"><a	class="suprablue"	

															href="tel:8592181880">(859)	218-1880</div>

														<div	class="contact_email"><a	class="suprablue"	

															href="mailto:ILLBorrowing@uky.edu">

															ILLBorrowing@uky.edu</div>

										

						</div>

						<div	class="dashing-li-last">

										All	Other	Questions	&	

Comments:

										

										<a	class="suprablue"	

											href="mailto:webadmin@lsv.uky.edu">

											WebAdmin@lsv.uky.edu

						</div>

		</div>

--snip--

Listing	6-3:	Part	of	the	source	code	for	a	live	web	page

Notice	that	all	the	information	is	encapsulated	in	a	parent	<div>	tag	with
class	attribute	of	sf-middle	1.	Information	for	the	Circulation	department
(name,	phone	number,	and	email	address)	is	held	in	a	child	<div>	tag	with	class
attribute	of	dashing-li	2.	The	information	for	the	other	two	areas,	Reference
3	and	Interlibrary	Loan	4,	is	held	in	two	other	child	<div>	tags	within	the

parent	tag.	Within	each	child	tag,	subtags	each	contain	a	piece	of	the	following
information:	department	name,	phone	number,	and	email	address.

These	patterns	are	important	to	notice	when	writing	a	Python	script	to	extract
the	information	you	need.	Next,	I’ll	explain	how	to	use	these	patterns	to	extract
the	information	from	the	HTML	file.

Download	scrape_live_web.py	from	the	book’s	resources	page	and	save	it	in
your	chapter	folder.	The	first	part	of	the	script	is	shown	in	Listing	6-4,	which
locates	the	<div>	tags	for	each	of	the	three	areas.

from	bs4	import	BeautifulSoup

import	requests

#	Provide	the	web	address	of	the	live	web

url	=	'http://libraries.uky.edu'

#	Obtain	information	from	the	live	web

1	page	=	requests.get(url)

#	Parse	the	page	to	obtain	the	parent	div	tag

soup	=	BeautifulSoup(page.text,	"html.parser")

div	=	soup.find('div',	class_="sf-middle")

#	Locate	the	three	child	div	tags

2	contacts	=	div.find_all("div",	class_="dashing-li")

#	Print	out	the	first	child	div	tag	to	examine	it

print(contacts[0])

--snip--

Listing	6-4:	Python	code	to	scrape	a	live	web	page

We	import	the	requests	module	to	obtain	the	source	code	from	the	live	web
page.	The	address	of	the	web	page	is	defined	in	the	variable	url.	At	1,	we	use
get()	to	fetch	the	HTML	code.	Then,	we	find	the	<div>	tag	with	the	class	value
of	sf-middle	and	use	it	as	the	parent	tag.

WARNING

Be	careful	not	to	miss	the	trailing	underscore	in	class_="sf-middle"	or
class_="dashing-li".	We	must	use	the	trailing	underscore	because	the
name	class	is	a	Python	keyword	and	cannot	be	used	as	a	variable
name.	See	Chapter	1	for	Python	rules.

At	2,	we	locate	the	three	child	<div>	tags	with	the	class	value	of	dashing-li

and	put	them	in	the	list	contacts,	because	each	child	<div>	tag	contains	all	the
contact	information	for	one	department.	Each	element	in	the	list	corresponds	to
one	of	the	departments.	For	example,	the	first	element	contains	all	the
information	for	the	Circulation	department,	and	we	print	it	out	in	Listing	6-5.

<div	class="dashing-li">

Circulation:

<div	class="contact_phone"><a	class="suprablue"	

href="tel:8592181881">

(859)	218-1881</div>

<div	class="contact_email"><a	class="suprablue"	

href="mailto:lib.circdesk@email.uky.edu">lib.circdesk@email.uky.edu

</div>

</div>

Listing	6-5:	Source	code	for	the	Circulation	department	on	the	live	web	page

The	second	part	of	scrape_live_web.py	will	print	out	the	detailed	information
for	each	of	the	three	areas.	It	is	shown	in	Listing	6-6.

--snip--

#	Obtain	information	from	each	child	tag

for	contact	in	contacts:

				#	Obtain	the	area	name

				area	=	contact.find('span',	class_="contact_area")

				print(area.text)

				#	Obtain	the	phone	and	email

				atags	=	contact.find_all('a',	href	=	True)

				for	atag	in	atags:

								print(atag.text)

Listing	6-6:	Python	code	to	print	out	the	scraped	information

We	go	into	each	element	in	the	list	contacts.	To	print	out	the	department
name,	we	locate	the		tag	with	the	class	attribute	of	contact_area.	The
content	of	the	tag	is	the	department	name.	The	two	<a>	tags	contain	the	phone
number	and	the	email	address	of	each	department,	and	we	also	print	them	out.
The	output	is	shown	here:

Circulation:

(859)	218-1881

lib.circdesk@email.uky.edu

Reference:

(859)	218-2048

refdesk@uky.edu

Interlibrary	Loan:

(859)	218-1880

ILLBorrowing@uky.edu

NOTE

The	Beautiful	Soup	library	often	provides	more	than	one	way	of
accomplishing	the	same	task.	For	example,	findAll()	and	find_all()
work	the	same,	and	find('span',	class_="contact_area")	and
find('span',	{"class":"contact_area"})	produce	the	same	result.
Many	Python	modules	or	libraries	have	different	versions	over	time,	and
the	old	functions	are	carried	over	to	newer	versions	to	maintain
backward	compatibility.

Voice-Activated	Podcasts
In	this	project,	our	goal	is	to	write	a	script	that	enables	you	to	say,	“Python,	tell
me	the	latest	news,”	and	the	script	will	broadcast	a	brief	from	an	NPR	news
podcast.	You’ll	first	learn	how	to	extract	the	MP3	file	associated	with	the
podcast	and	play	it,	and	then	you’ll	add	the	speech	recognition	feature	to	the
script	so	that	you	can	voice-activate	it.	Because	the	news	brief	is	about	five
minutes	long,	you’ll	also	learn	how	to	stop	the	podcast	via	voice	control	while
the	news	is	playing.

Extract	and	Play	Podcasts
First,	find	a	website	with	a	newscast	you	like.	For	this,	we’ll	use	NPR	News	Now
because	it’s	free	and	updated	every	hour,	24/7.	The	web	address	is
https://www.npr.org/podcasts/500005/npr-news-now/.

Go	to	the	site,	and	you	should	see	something	like	Figure	6-3.

https://www.npr.org/podcasts/500005/npr-news-now/

Figure	6-3:	Front	page	of	NPR	News	Now

As	you	can	see,	the	latest	news	brief	for	me	was	updated	at	7	AM	ET	on	Feb
9,	2021.	Below	it,	you	can	also	see	news	briefs	from	6	AM,	5	AM,	and	so	on.

To	locate	the	MP3	file	that	contains	the	news	briefs,	right-click	anywhere	on
the	page	and,	from	the	menu	that	appears,	select	the	View	page	source	option
(or	press	CTRL-U).	You	should	see	the	source	code,	as	in	Figure	6-4.

Figure	6-4:	Source	code	for	NPR	News	Now

You’ll	notice	that	the	MP3	files	are	contained	in	<a>	tags.	We	need	to	use	the
Beautiful	Soup	library	to	extract	all	<a>	tags	that	contain	MP3	files	and	then
extract	the	link	from	the	first	tag,	which	will	contain	the	latest	news	brief.	If	you
wanted	to,	you	could	listen	to	previous	news	briefs	as	well;	for	example,	the
second	and	the	third	tags	contain	the	news	briefs	from	6	AM	and	5	AM	in
Figure	6-3.

Next,	we	need	to	extract	the	link,	remove	unwanted	components,	and	use	the
webbrowser	module	to	open	the	URL	of	the	MP3	file	so	that	the	podcast	can
start	playing.	The	script	npr_news.py,	in	Listing	6-7,	shows	how	to	accomplish
this.

#	Import	needed	modules

import	requests

import	bs4

import	webbrowser

#	Locate	the	website	for	the	NPR	news	brief

url	=	'https://www.npr.org/podcasts/500005/npr-news-now'

#	Convert	the	source	code	to	a	soup	string

response	=	requests.get(url)

1	soup	=	bs4.BeautifulSoup(response.text,	'html.parser')

#	Locate	the	tag	that	contains	the	mp3	files

2	casts	=	soup.findAll('a',	{'class':	'audio-module-listen'})

print(casts)

#	Obtain	the	weblink	for	the	mp3	file	related	to	the	latest	news	

brief

3	cast	=	casts[0]['href']

print(cast)

#	Remove	the	unwanted	components	in	the	link

4	pos	=	cast.find('?')

print(cast[0:pos])

#	Extract	the	mp3	file	link,	and	play	the	file

mymp3	=	cast[0:pos]

webbrowser.open(mymp3)

Listing	6-7:	A	script	to	play	online	podcasts

We	first	use	get()	from	the	requests	module	to	obtain	the	source	code	of	the
NPR	News	Now	website	and	save	it	in	the	variable	response.	At	1,	we	use	the
Beautiful	Soup	library	to	parse	the	text	and	the	html.parser	option	to	specify
that	the	source	code	is	in	HTML.	We	saw	in	Figure	6-4	that	the	MP3	files	are
held	in	<a>	tags	with	a	class	attribute	of	audio-module-listen.	Therefore,	at
2	we	use	findAll()	from	Beautiful	Soup	to	get	all	those	tags	and	put	them	in
the	list	casts.	Listing	6-8	shows	the	content	of	casts.

[<a	class="audio-module-listen"	

href="https://play.podtrac.com/500005/edge1.pod.npr.org/anon.npr-

mp3/npr/newscasts/2021/02/09/newscast070736.mp3?dl=1&

siteplayer=true&size=4500000&awCollectionId=500005&

awEpisodeId=965747474&dl=1">

<b	class="audio-module-listen-inner">

<b	class="audio-module-listen-icon	icn-play">

<b	class="audio-module-listen-text">

<b	class="audio-module-cta">Listen

<b	class="audio-module-listen-duration">

·	

5:00

,	<a	class="audio-module-listen"	

href="https://play.podtrac.com/500005/edge1.pod.npr.org/anon.npr-

mp3/npr/newscasts/2021/02/09/newscast060736.mp3?dl=1&

siteplayer=true&size=4500000&awCollectionId=500005&

awEpisodeId=965731320&dl=1">

<b	class="audio-module-listen-inner">

<b	class="audio-module-listen-icon	icn-play">

<b	class="audio-module-listen-text">

<b	class="audio-module-cta">Listen

<b	class="audio-module-listen-duration">

·	

5:00

,	<a	class="audio-module-listen"	

href="https://play.podtrac.com/500005/edge1.pod.npr.org/anon.npr-

mp3/npr/newscasts/2021/02/09/newscast050736.mp3?dl=1&

siteplayer=true&size=4500000&awCollectionId=500005&

awEpisodeId=965721223&dl=1">	

--snip--

]

Listing	6-8:	All	<a>	tags	with	a	class	attribute	of	audio-module-listen

As	you	can	see,	multiple	<a>	tags	contain	MP3	files.	At	3,	we	extract	the	first
<a>	tag	in	the	list	and	obtains	the	href	attribute	of	the	tag	(the	link	to	the	MP3
file),	saving	it	to	cast.	The	link	is	as	follows:

https://play.podtrac.com/500005/edge1.pod.npr.org/anon.npr-

mp3/npr/newscasts/2021/02/09/newscast070736.mp3?

dl=1&siteplayer=true&size=450

0000&awCollectionId=500005&awEpisodeId=965747474&dl=1	

We	trim	the	link	so	that	it	ends	with	the	.mp3	extension.	To	do	that,	we	use	the
fact	that	the	?	character	is	right	after	.mp3	in	the	link	and	then	use	the	string
method	find()	to	locate	the	position	of	?	in	the	link	4.	We	then	trim	the	link
accordingly	and	print	it	out.	The	trimmed	link	is	as	follows:

https://play.podtrac.com/500005/edge1.pod.npr.org/anon.npr-

mp3/npr/newscasts/2021/02/09/newscast070736.mp3

Finally,	we	extract	the	link	to	the	online	MP3	file	and	use	open()	in	the
webbrowser	module	to	open	and	play	the	MP3	file.

If	you	run	the	script,	you	should	hear	the	latest	NPR	news	brief	playing	in
your	default	web	browser.

Voice-Activate	Podcasts
Next,	we’ll	add	speech	recognition	to	the	script	so	you	can	voice-activate	the
podcast.	Further,	since	the	podcast	is	about	five	minutes	long,	being	able	to	stop
it	with	your	voice	is	useful.	To	achieve	that,	we	need	to	install	the	pygame

module	because	it	allows	the	Python	script	to	stop	the	audio	file	while	the	audio
is	playing.	The	webbrowser	module	does	not	have	that	functionality.

Installing	pygame	is	straightforward	in	Windows.	Execute	this	line	of	code	in
an	Anaconda	prompt	with	your	virtual	environment	activated:

pip	install	pygame

Then	follow	the	instructions.

If	you	are	using	Mac,	recent	versions	of	macOS	require	the	installation	of
Pygame	2.	To	install	it,	execute	this	line	of	code	in	a	terminal	with	your	virtual
environment	activated:

pip	install	pygame==2.0.0

Then	follow	the	instructions.

If	you	are	using	Linux,	execute	the	following	three	lines	of	code	in	a	terminal
with	your	virtual	environment	activated:

sudo	apt-get	install	python3-pip	python3-dev

sudo	pip3	install	pygame

pip	install	pygame

See	Appendix	A	at	the	end	of	this	book	for	further	detail.	If	the	installation	is
not	successful,	you	can	use	the	vlc	module	as	an	alternative.

The	script	news_brief_hs.py	in	Listing	6-9	shows	how	to	use	voice	control	to
activate	the	NPR	News	Now	podcast	and	stop	it	whenever	you	want.

from	io	import	BytesIO

import	requests

import	bs4

from	pygame	import	mixer

#	Import	functions	from	the	local	package

from	mptpkg	import	voice_to_text,	print_say

1	def	news_brief():

				#	Locate	the	website	for	the	NPR	news	brief

				url	=	'https://www.npr.org/podcasts/500005/npr-news-now'

				#	Convert	the	source	code	to	a	soup	string

				response	=	requests.get(url)

				soup	=	bs4.BeautifulSoup(response.text,	'html.parser')

				#	Locate	the	tag	that	contains	the	mp3	files

				casts	=	soup.findAll('a',	{'class':	'audio-module-listen'})

				#	Obtain	the	web	link	for	the	mp3	file

				cast	=	casts[0]['href']

				#	Remove	the	unwanted	components	in	the	link

				mp3	=	cast.find("?")

				mymp3	=	cast[0:mp3]

				#	Play	the	mp3	using	the	pygame	module

				mymp3	=	requests.get(mymp3)

				Voice	=	BytesIO()

				voice.write(mymp3.content)

				voice.seek(0)

				mixer.init()

				mixer.music.load(voice)

				mixer.music.play()

2	while	True:

				print_say('Python	is	listening…')

				inp	=	voice_to_text().lower()

				print_say(f'you	just	said:	{inp}')

				if	inp	==	"stop	listening":

								print_say('Goodbye!')

								break

				#	If	"news"	in	your	voice	command,	play	news	brief

				3	elif	"news"	in	inp:	

								news_brief()

								#	Python	listens	in	the	background

								while	True:

												background	=	voice_to_text().lower()

												#	Stops	playing	if	you	say	"stop	playing"

												if	"stop	playing"	in	background:

																mixer.music.stop()

																break

								continue	

Listing	6-9:	Python	script	to	voice-activate	NPR	News	Now

We	import	needed	modules	first.	In	particular,	we	import	BytesIO()	from	the
io	module	to	create	a	temporary	file	to	contain	the	news	brief	audio	file.	This
prevents	crashes	that	could	occur	if	the	script	had	to	overwrite	the	file	when	you
rerun	it.

We	define	news_brief()	1.	This	function	accomplishes	what	we	did	in
npr_news.py	with	a	few	exceptions.	We	download	the	MP3	file	and	save	it	to	the

temporary	file	voice.	After	that,	we	use	the	pygame	module	to	play	the	latest
news	brief	from	NPR	News	Now.

At	2,	we	start	an	infinite	loop.	At	each	iteration,	the	script	captures	your
voice.	When	the	word	news	is	in	your	voice	command	3,	the	script	will	call
news_brief()	and	start	playing	the	latest	NPR	news	brief.	While	the	news	is
playing,	the	script	is	constantly	listening	to	your	voice	command	in	the
background.	When	you	say,	“Stop	playing,”	anytime	while	or	after	the	news
plays,	the	loop	will	break	and	go	back	to	the	main	menu.	If	you	want	to	end	the
script,	simply	say,	“Stop	listening.”

TRY	IT	YOURSELF

Wait	Wait	.	.	.	Don’t	Tell	Me!	is	a	weekly	radio	show,	and	recent	episodes	are	available	as
podcasts	at	https://www.npr.org/programs/wait-wait-dont-tell-me/.	Its	source	code	is	similar	to
that	of	NPR	News	Now.	Create	a	script	similar	to	new_brief_hs.py	to	voice-activate	the	latest
episode	of	the	online	broadcast.

Voice-Activated	Radio	Player
Our	goal	in	this	project	is	to	write	a	script	to	play	online	live	radio	using	voice
control.	When	you	say,	“Python,	play	online	radio,”	the	script	will	go	to	the
website	and	click	the	Play	button	so	that	the	live	radio	starts	playing	on	your
computer.

We’ll	be	using	the	selenium	module	to	automate	web	browser	interaction	from
Python.	We’ll	then	add	voice	control	to	the	script	to	achieve	voice	activation.

Install	the	selenium	Module
The	selenium	module	is	not	in	the	Python	standard	library,	so	first	we’ll	install	it.
Open	your	Anaconda	prompt	(Windows)	or	a	terminal	(Mac	or	Linux),	activate
your	virtual	environment,	and	execute	this	command:

conda	install	selenium	

Follow	the	onscreen	instructions	to	finish	the	installation.

https://www.npr.org/programs/wait-wait-dont-tell-me/

Control	Web	Pages
The	selenium	module	allows	you	to	automate	web	browser	interactions	with
Python.

Online	Radio	Box	(https://onlineradiobox.com/us/)	will	serve	as	our	radio
station	platform.	You	can	change	this	to	any	online	radio	station	you	like,	such	as
Magic	106.7	or	NPR	online	radio	stations.

Go	to	the	website	and	you	should	see	a	screen	similar	to	that	shown	in	Figure
6-5.

Figure	6-5:	Front	page	of	Online	Radio	Box

When	the	web	page	loads,	live	radio	is	not	playing.	You	need	to	use	selenium
to	interact	with	the	web	browser	to	click	the	Play	button	(the	triangle-shaped
white	button	at	the	bottom	in	Figure	6-5).

Now	you’ll	learn	how	to	locate	the	XPath	of	the	Play	button	on	the	website.
XPath	is	short	for	Extensible	Markup	Language	(XML)	path.	It	is	the	syntax	for
finding	an	element	on	the	web	page	by	using	an	XML	path	expression.

NOTE

We	use	the	Chrome	browser	because	it	supports	all	major	operating
systems.	Websites	for	other	browsers	and	other	operating	systems	are	on
the	Selenium	website	(https://www.selenium.dev/).

Here	are	the	steps	to	find	the	XPath	of	the	Play	button:

1.	 Open	the	web	page	of	Online	Radio	Box,	shown	in	Figure	6-5,	using	the
Chrome	browser.

2.	 Put	your	mouse	cursor	on	the	Play	button	(do	not	click).	Then	right-click	and
choose	Inspect	from	the	pop-up	menu.	The	source	code	will	show	at	the
right	side	of	the	web	page,	as	shown	in	Figure	6-6.

3.	 Right-click	the	highlighted	line	of	code	at	the	right	side	of	the	page	and
select	Copy▶XPath.

4.	 Paste	the	XPath	in	a	blank	file	to	be	used	later.	In	this	example,	the	XPath	for
the	Play	button	is	//*[@id="b_top_play"].

https://www.selenium.dev/

Figure	6-6:	Locate	the	XPath	of	the	Play	button

Next,	you	need	to	download	the	web	driver	for	a	specific	browser.	If	you’d
like	to	learn	more	about	the	Selenium	project,	an	abundance	of	information	is	on
its	website.

Follow	the	instructions	at	https://chromedriver.chromium.org/downloads/	and
download	the	executable	file	appropriate	to	your	operating	system.	In	Windows,
this	is	chromedriver_win32.zip;	extract	the	ZIP	file	and	place	the	executable	file
in	the	chapter	folder.	On	Unix-based	operating	systems,	the	executable	file	is
called	chromedriver.	On	Windows,	the	executable	file	is	chromedriver.exe.

WARNING

The	XPath	of	a	link	may	change	constantly	on	many	sites.	You	may	have
to	get	the	most	updated	XPath	before	you	run	a	script.

https://chromedriver.chromium.org/downloads/

As	the	final	step,	save	play_live_radio.py	in	your	chapter	folder	and	run	it.
The	script,	also	available	at	the	book’s	resources	page,	is	shown	in	Listing	6-10.

#	Put	your	web	driver	in	the	same	folder	as	this	script	

from	selenium	import	web	driver

browser	=	webdriver.Chrome(executable_path='./chromedriver')

browser.get("https://onlineradiobox.com/us/")

button	=	browser.find_element_by_xpath('//*[@id="b_top_play"]')

button.click()

Listing	6-10:	Python	code	to	automate	online	live	radio

NOTE

For	Windows,	it’s	important	to	put	chromedriver.exe	in	the	same	folder
as	play_live_radio.py	and	have	Chrome	installed	on	your	computer.	On
Linux	with	Firefox,	the	Gecko	web	driver	needs	to	be	on	the	system	path.
Otherwise,	the	selenium	module	will	not	be	able	to	automate	the	web
browser.	You	can	find	further	installation	details	on	the	Chromium
website	or	on	sites	such	as	Stack	Overflow.

We	first	import	webdriver()	from	the	selenium	module.	First,	the	script
launches	the	web	browser.	Then,	the	get()	function	brings	us	to	the	live	radio
site	based	on	the	web	address	provided.	We	then	define	the	Play	button	as	a
variable	button,	using	the	XPath	that	we’ve	generated	.	Finally,	we	use	click()
in	the	selenium	module	to	activate	the	Play	button	on	the	website.	Consequently,
if	everything	is	installed	and	configured	correctly,	when	you	run	the	script,	the
web	browser	will	open	and	the	online	live	radio	will	start	playing.

It’s	educational	to	run	the	script	line	by	line	by	using	the	F9	key.	You	will	see
that	after	the	first	line	is	run,	the	Chrome	browser	opens	on	your	computer,	and
after	the	second,	the	browser	brings	you	to	the	Online	Radio	Box	site.	With	the
final	two	lines,	the	Play	button	is	being	activated.	You	will	then	hear	the	live
radio	playing.

Voice-Activate	Live	Radio
We’ll	add	speech	recognition	and	text-to-speech	functionality	to	the	script	so	you
can	voice-activate	the	online	live	radio.	The	script	voice_live_radio.py	in	Listing
6-11	shows	you	how	to	accomplish	that.

#	Put	web	driver	in	the	same	folder	as	this	script	

#	Import	the	web	driver	function	from	selenium

from	selenium	import	webdriver

from	selenium.webdriver.chrome.options	import	Options

#	Import	functions	from	the	local	package

from	mptpkg	import	voice_to_text,	print_say

1	def	live_radio():

				global	button

				chrome_options	=	Options()		

				chrome_options.add_argument("—headless")	

				browser	=	webdriver.Chrome\

				(executable_path	=	'./chromedriver',chrome_options	=	

chrome_options)

				browser.get("https://onlineradiobox.com/us/")

				button	=	browser.find_element_by_xpath('//*

[@id="b_top_play"]')

				button.click()

		2	while	True:

								print_say("how	may	I	help	you?")

						3	inp	=	voice_to_text().lower()	

								print_say(f'you	just	said	{inp}')

						4	if	inp	==	"stop	listening":	

												print_say('Goodbye!')

												break

						5	elif	"radio"	in	inp:	

												print_say('OK,	play	live	radio	online	for	you!')

												live_radio()

												while	True:

																background	=	voice_to_text().lower()

																if	"stop	playing"	in	background:

																				button.click()

																				break

																else:

																				continue

Listing	6-11:	Python	code	to	voice-activate	online	live	radio

We	first	import	all	needed	modules.	Since	we	need	the	speech	recognition	and
text-to-speech	features,	we	import	voice_to_text()	from	the	local	mptpkg
package	to	convert	speech	to	text.	We	also	import	print_say()	from	the	local
mptpkg	package	to	convert	text	to	human	speech.

We	then	define	live_radio()	to	accomplish	what	play_live_radio.py	does
with	a	few	modifications	1.	When	the	function	is	activated,	the	script	will	go	to
the	online	live	radio	station	and	click	the	Play	button	so	that	live	radio	starts
playing.	We	use	the	headless	option	so	you	won’t	see	a	web	browser	pop	up.
We	also	make	the	variable	button	a	global	variable	so	we	can	use	the	variable
later	in	the	script.

At	2,	an	infinite	loop	begins.	At	each	iteration,	the	script	asks,	“How	may	I
help	you?”	After	you	speak	into	the	microphone,	voice_to_text()	converts
your	speech	to	text	and	saves	it	as	the	string	variable	inp.	The	lower()	function
converts	all	characters	to	lowercase	to	avoid	mismatch	due	to	letter	capitalization
3.

When	you	say,	“Stop	listening,”	the	if	branch	of	the	code	is	activated	4.	The
script	prints	Goodbye,	the	loop	breaks,	and	the	script	ends.	When	the	word	radio
is	in	your	voice	command,	the	elif	branch	of	the	code	is	activated	5.	As	a
result,	live_radio()	is	called,	and	the	online	live	radio	starts	playing.	While	the
radio	is	playing,	the	script	is	quietly	listening	to	you	in	the	background.	If	you
say,	“Stop	playing”	anytime	when	the	radio	is	playing,	the	button	will	click	again
and	the	radio	will	change	from	Play	to	Stop.	After	that,	the	script	exits	the	radio
mode	and	returns	to	the	main	menu.

TRY	IT	YOURSELF

Magic	106.7	FM	is	a	radio	station	in	Boston	(https://www.radio.com/magic1067/listen/).	Write
a	script	similar	to	voice_live_radio.py	to	voice-activate	the	live	radio	on	this	site.

Voice-Activated	Videos
You	can	apply	the	method	you	learned	in	the	preceding	section	to	voice-activate
prerecorded	online	videos	or	even	online	live	TV.

NBC’s	Nightly	News	with	Lester	Holt	provides	prerecorded	videos	at
https://www.nbcnews.com/nightly-news-full-episodes/,	shown	in	Figure	6-7.

https://www.radio.com/magic1067/listen
http:///
https://www.nbcnews.com/nightly-news-full-episodes/

Figure	6-7:	Front	page	of	NBC’s	Nightly	News

We’ll	use	Python	to	interact	with	the	web	browser	to	click	the	Play	button	that
activates	the	online	video.	You	can	see	a	triangle-shaped	Play	button	on	the
video	frame.	Follow	the	steps	in	“Control	Web	Pages”	on	page	125	to	find	the
XPath	of	the	button.

The	script	voice_online_video.py	in	Listing	6-12	shows	how	to	voice-activate
the	online	video.

#	Import	functions	from	the	local	package

from	mptpkg	import	voice_to_text,	print_say	

#	Import	the	web	driver	function	from	selenium

from	selenium	import	webdriver

def	online_video():	

				browser	=	webdriver.Chrome(executable_path='./chromedriver')

				browser.get("https://www.nbcnews.com/nightly-news-full-

episodes")

				button	=	browser.find_element_by_xpath\

('//*[@id="content"]/div[6]/div/div[3]/div/\	

1	section[2]/div[2]/div/div[1]/article/div[1]/h2/a[2]/span')	

				button.click()	

2	while	True:	

				print_say("how	may	I	help	you?")

				inp	=	voice_to_text().lower()	

				print_say(f'you	just	said	{inp}')

				if	inp	==	"stop	listening":	

								print('Goodbye!')

								break

				elif	"video"	in	inp:

								print_say('OK,	play	online	video	for	you!')

								online_video()

								break

Listing	6-12:	A	script	to	voice-activate	online	video

The	logic	is	the	same	as	when	dealing	with	live	radio.	We	first	define
online_video()	to	be	called	later.	When	the	function	is	activated,	the	script	will
go	to	the	site,	locate	the	XPath	of	the	Play	button	1,	and	click	it	so	the	video
will	start	playing.

An	infinite	loop	starts	at	2.	At	each	iteration,	the	script	asks,	“How	may	I
help	you?”	After	you	speak	into	the	microphone,	voice_to_text()	converts
your	speech	to	text	and	saves	it	as	an	all-lowercase	string	variable	inp.

When	you	say,	“Stop	listening,”	the	if	branch	of	the	code	is	activated.	The
script	prints	Goodbye!,	the	loop	breaks,	and	the	script	ends.	When	the	word	video
is	in	your	voice	command,	the	elif	branch	of	the	code	is	activated.	As	a	result,
online_video()	is	called,	and	the	online	video	starts	playing.

TRY	IT	YOURSELF

Vimeo	provides	a	music	video	by	Katy	Perry	at	https://vimeo.com/160883302/.	Write	a	script
to	voice-activate	the	online	music	video	(try	the	XPath	//*
[@id="160883302"]/div[7]/div[3]/button	if	you	have	trouble	locating	it).

Summary
In	this	chapter,	you	learned	the	basics	of	web	scraping:	how	HTML	works,
including	the	different	types	and	uses	of	HTML	tags,	and	how	to	use	the
Beautiful	Soup	library	to	parse	HTML	files	and	scrape	the	information	you	need.

https://vimeo.com/160883302
http:///

Armed	with	these	techniques,	you	learned	how	to	parse	a	source	file	of	the
podcast	NPR	News	Now	and	locate	its	MP3	file.	You	then	used	the	webbrowser
module	to	play	the	online	MP3.	You	also	learned	how	to	voice	activate	online
podcasts,	using	the	pygame	module	to	play	the	audio	file	so	that	you	can	stop	it
anytime	via	voice	commands.

You	then	learned	to	voice	activate	an	Online	Radio	Box	station.	Specifically,
you	learned	how	to	use	the	Selenium	web	driver	to	interact	with	a	web	browser.
You	directed	Python	to	click	the	Play	button	to	activate	the	live	radio	broadcast.
You	also	learned	to	use	voice	control	to	accomplish	these	tasks.

Finally,	you	applied	the	same	idea	to	online	videos,	such	as	NBC’s	Nightly
News	with	Lester	Holt.

End-of-Chapter	Exercises
1.	 Modify	parse_local.py	to	print	out	the	class	attribute	value	and	the	web

address	of	the	<a>	tag	for	the	University	of	Kentucky	Libraries.

2.	 Modify	scrape_live_web.py	to	print	out	the	information	for	the	site	area	All
Other	Questions	&	Comments,	as	shown	in	Figure	6-2.

3.	 This	URL	points	to	a	podcast	by	Gwyneth	Paltrow	and	Oprah	Winfrey:
https://goop.com/the-goop-podcast/gwyneth-x-oprah-power-perception-soul-
purpose/.	Write	a	script	to	voice	activate	the	online	podcast.

7
BUILDING	A	VIRTUAL	PERSONAL

ASSISTANT

In	this	and	the	next	chapter,	you’ll	learn
how	to	create	your	own	virtual	personal
assistant	(VPA),	similar	to	Amazon’s

Alexa.	You’ll	first	have	an	overview	of	your	VPA	and	its
functionalities.	You’ll	then	import	all	needed	modules	at
once	so	you	can	start	to	run	your	VPA	right	away.	You’ll
create	a	script	to	make	your	VPA	stand	by	24/7	without
disturbing	you.	Whenever	you	need	assistance,	you	can
say,	“Hello	Python”	to	wake	it	up,	and	when	you	want	it
to	stand	by	again,	you	can	use	a	voice	command	to	put	it
in	standby	mode.
After	that,	you’ll	examine	various	functionalities	to	add	to	your	VPA.	The	first

two	are	a	timer	and	an	alarm	clock.

The	third	functionality	enables	your	VPA	to	tell	jokes.	When	you	say,	“Tell
me	a	joke,”	the	script	will	randomly	select	a	joke	from	a	list	and	speak	it	out
loud	to	you.

The	fourth	functionality	sends	email.	If	you	say,	“Send	Jessica	an	email,”	the
script	will	activate	the	email	feature,	retrieve	Jessica’s	email	address	from	your
recipient	list,	and	ask	you	for	the	subject	line	and	content,	which	you	can	dictate
before	telling	the	VPA	to	send.

In	Chapter	8,	you’ll	learn	how	to	make	your	VPA	capable	of	answering
(almost)	any	question.	Before	you	begin,	set	up	the	folder	/mpt/ch07/	for	this
chapter.	As	always,	all	scripts	in	this	chapter	are	available	at	the	book’s
resources	page,	https://www.nostarch.com/make-python-talk/.

NEW	SKILLS

Creating	a	standby	mode	to	silently	wait	for	your	commands	24/7

Using	the	time-out	option	in	the	speech	recognition	module	to	make	it	more	responsive

Setting	a	timer	or	an	alarm	clock

Voice-activating	a	joke-telling	functionality

Asking	Python	to	send	an	email	by	using	the	smtplib	module

An	Overview	of	Your	VPA
Before	you	learn	about	the	functionalities	of	your	VPA,	let’s	explore	its
structure.	You’ll	start	by	downloading	needed	files	and	installing	a	third-party
module.

Download	VPA	Files
Let’s	download	the	needed	files.	Go	to	the	book’s	resources	website
https://www.nostarch.com/make-python-talk/	and	download	the	following	files
from	the	/mpt/mptpkg/	directory:	mywakeup.py,	mytimer.py,	myalarm.py,
myjoke.py,	and	myemail.py.	Put	them	in	the	same	directory	on	your	computer
where	you	place	your	self-made	local	package	files.	Refer	to	Chapter	5	for
instructions.	I’ll	explain	the	purpose	of	these	files	later	in	this	chapter.

NOTE

The	files	mywakeup.py,	mytimer.py,	and	so	on	are	local	module	files	to
be	put	in	the	local	package	mptpkg.	As	a	result,	they	should	be	placed	in
the	package	folder	/mpt/mptpkg/	instead	of	the	chapter	folder
/mpt/ch07/.

https://www.nostarch.com/make-python-talk
https://www.nostarch.com/make-python-talk/

Next,	open	the	script	__init__.py	in	the	package	directory	/mpt/mptpkg/	on
your	computer.	As	you	may	recall	from	Chapter	5,	you’ve	already	placed	the
following	two	lines	of	code	in	it:

from	.mysr	import	voice_to_text

from	.mysay	import	print_say

Add	the	five	lines	of	code	in	Listing	7-1	to	the	end	of	__init__.py.

from	.mywakeup	import	wakeup

from	.mytimer	import	timer

from	.myalarm	import	alarm

from	.myjoke	import	joke

from	.myemail	import	email

Listing	7-1:	Importing	functions	from	local	modules	to	the	local	package

This	code	imports	the	five	functions	wakeup(),	timer(),	alarm(),	joke(),
and	email()	from	the	five	modules	to	the	local	package	so	you	can	later	import
them	at	the	package	level.	More	on	this	point	soon.

Next,	go	to	the	book’s	resources	website	and	download	vpa.py	from	the
chapter	directory	/mpt/ch07/.	Save	it	on	your	computer	where	you	place	this
chapter’s	Python	scripts.	The	code	for	vpa.py	is	shown	in	Listing	7-2.

#	Import	functions	from	the	local	package

from	mptpkg	import	voice_to_text,	print_say,	wakeup,	timer,	

alarm,	joke,	email

#	Put	the	script	in	standby

1	while	True:

				#	Capture	your	voice	command	quietly	in	standby

				wake_up	=	wakeup()

				#	You	can	wake	up	the	VPA	by	saying	"Hello	Python"

				while	wake_up	==	"Activated":

								print_say("How	may	I	help	you?")

								inp	=	voice_to_text().lower()

								print_say(f'You	just	said	{inp}.')

								if	"back"	in	inp	and	"stand"	in	inp:

												print_say('OK,	back	to	standby;	let	me	know	if	you	

need	help!')

												break

								#	Activate	the	timer

						2	elif	"timer	for"	in	inp	and	("hour"	in	inp	or	"minute"	in	

inp):

												timer(inp)

												continue

								#	Activate	the	alarm	clock

								elif	"alarm	for"	in	inp	and	("a.m."	in	inp	or	"p.m."	in	

inp):

												alarm(inp)

												continue

								#	Activate	the	joke-telling	functionality

								elif	"joke"	in	inp	and	"tell"	in	inp:

												joke()

												continue

								#	Activate	the	email-sending	functionality

								elif	"send"	in	inp	and	"email"	in	inp:

												email()

												continue

								else:					

												continue

				#	End	the	script	by	including	"stop"	in	your	voice	command

				if	wake_up	==	"ToQuit":

								print_say("OK,	exit	the	script;	goodbye!")

								break

Listing	7-2:	Python	code	for	a	VPA

We	first	import	the	seven	functions	(voice_to_text(),	print_say(),
wakeup(),	and	so	on)	from	the	local	package	mptpkg.	The	code	in	Listing	7-1
already	imported	the	five	functions	(wakeup(),	timer(),	and	so	on)	from	the
local	modules	to	mptpkg,	so	here	we	import	the	functions	at	the	package	level
directly.

We	start	the	script	by	creating	an	infinite	loop	1.	At	each	iteration,	the	VPA
listens	to	your	voice	command	quietly	in	the	background.	You	can	say,	“Hello
Python”	to	wake	up	the	VPA.	After	it	wakes	up,	the	VPA	asks,	“How	may	I	help
you?”	and	takes	your	voice	command.	You	can	activate	one	of	the	four
functionalities	of	the	VPA	2:	setting	a	timer,	setting	an	alarm	clock,	telling	a
joke,	or	sending	an	email.

You	can	put	the	VPA	back	on	standby	when	you	are	finished	by	including
“back”	and	“standby”	in	your	voice	input.	While	the	script	is	in	standby,	you	can
terminate	the	script	by	saying,	“Stop	the	script”	or	“Stop	listening.”

Before	running	vpa.py,	you	need	to	install	a	third-party	module.

Install	the	arrow	Module
We’ll	first	install	the	arrow	module	to	tell	the	time	and	date	for	the	timer	and
alarm	clock	functionalities	in	the	VPA.

The	Python	standard	library	has	several	modules	that	can	tell	the	time	and
date,	including	the	well-known	time	and	datetime.	However,	they	are	not	very
user-friendly,	with	complicated	formatting.	Further,	you	need	to	use	several
modules	in	the	Python	standard	library	to	achieve	what	we	try	to	accomplish	in
this	chapter.	As	a	result,	we’ll	use	the	third-party	module	arrow,	which	offers	a
more	convenient	way	to	deal	with	times.

You	can	install	arrow	in	your	Anaconda	prompt	(Windows)	or	a	terminal
(Mac	or	Linux)	by	using	the	following	command,	with	the	virtual	environment
chatting	activated:

conda	install	arrow

Manage	the	Standby	Mode
Here	you’ll	set	up	the	standby	mode	for	your	VPA.	At	the	end	of	this	section,
you’ll	be	able	to	activate	the	VPA	by	saying,	“Hello	Python.”	The	VPA	will
respond,	“How	may	I	help	you?”

If	you	then	say,	“Go	back	to	standby,”	the	script	will	return	to	standby	mode
and	keep	quiet.	While	it’s	in	standby,	you	can	even	choose	to	end	the	script	by
including	stop	in	your	voice	command.

Create	the	Local	Module	mywakeup
First,	you’ll	set	the	script	to	recognize	certain	commands.	Open	mywakeup.py
you	just	downloaded	in	your	Spyder	editor.	This	script	is	based	on	mysr.py	from
Chapter	3,	with	some	significant	modifications.	Listing	7-3	highlights	the
differences.

import	speech_recognition	as	sr

speech	=	sr.Recognizer()

#	Define	a	wakeup()	function	to	determine	the	status	of	the	VPA

1	def	wakeup():

				wakeup	=	"StandBy"

				voice_input	=	""	

				with	sr.Microphone()	as	source:

								speech.adjust_for_ambient_noise(source)

								try:

										2	audio	=	speech.listen(source,timeout=3)

												voice_input	=	speech.recognize_google(audio).lower()

								except	sr.UnknownValueError:

												pass

								except	sr.RequestError:

												pass

								except	sr.WaitTimeoutError:

												pass

				if	"hello"	in	voice_input	and	"python"	in	voice_input:

								wakeup	=	"Activated"	

				elif	"stop"	in	voice_input:

								wakeup	=	"ToQuit"

				return	wakeup

Listing	7-3:	Python	code	for	the	mywakeup	module

We	first	import	speech_recognition	and	define	wakeup()	1.	We	create	a
variable	wakeup	and	set	the	default	value	as	StandBy.	We	then	capture	the	voice
input	from	the	microphone.

Here	I	did	a	little	tweaking	to	make	the	script	more	responsive:	the	timeout=3
option	in	the	listen()	method	tells	the	script	to	time	out	every	three	seconds
and	analyze	the	voice	input	2,	meaning	it	checks	for	a	voice	command	every
three	seconds.	Without	this	option,	the	script	may	wait	too	long	to	respond,	and
you	may	have	to	say,	“Hello	Python”	a	couple	of	times	before	you	catch	the
script’s	attention.

We	convert	all	text	to	lowercase	to	avoid	mismatch	due	to	capitalization.	We
also	use	exception	handling	to	prevent	the	script	from	crashing.

When	a	voice	command	is	captured,	the	script	checks	whether	hello	and
Python	are	in	the	voice	input.	If	yes,	the	variable	wakeup	changes	its	value	to
Activated.	Similarly,	if	you	say,	“Stop	listening”	or	“Stop	the	script,”	the
variable	wakeup	changes	to	ToQuit.	When	the	function	is	called,	it	will	return
whatever	value	is	stored	in	the	variable	wakeup.

Set	Some	Responses
Now	that	you	know	how	the	mywakeup	module	works,	let’s	learn	how	to

manage	standby	mode.

Run	vpa.py	in	your	Spyder	editor.	You’ll	notice	that	when	the	script	is
running,	nothing	happens.	However,	your	VPA	is	quietly	listening	in	the
background.	You	can	activate	the	VPA	by	saying,	“Hello	Python.”	Once	the	job
is	done,	you	can	put	it	back	to	standby.

The	following	output	is	from	one	interaction	with	the	script,	with	my	voice
input	in	bold:

hello	Python

How	may	I	help	you?

go	back	to	standby

You	just	said	go	back	to	standby.	

OK,	back	to	standby;	let	me	know	if	you	need	help!

hello	Python

How	may	I	help	you?

go	back	to	standby

You	just	said	go	back	to	standby.

OK,	back	to	standby;	let	me	know	if	you	need	help!

stop	listening

OK,	exit	the	script;	goodbye!

As	you	can	see,	I	activated	the	VPA	and	then	put	it	back	to	standby.	I	activated
the	VPA	and	then	returned	it	to	standby	a	second	time.	After	that,	I	said,	“Stop
listening”	to	end	the	script.

Run	the	script	several	times	to	ensure	that	you	can	voice-activate	the	VPA,	put
it	on	standby,	and	end	the	script.	Next,	we’ll	examine	the	individual
functionalities	of	the	VPA	one	by	one.

Ask	Your	VPA	to	Set	a	Timer
Let’s	explore	the	first	feature:	setting	a	timer.	To	do	that,	you’ll	first	learn	how	to
tell	time	in	Python.	We’ll	use	the	arrow	module	to	tell	time	in	Python	and	then
create	a	timer	that	takes	written	commands.	Finally,	we’ll	create	a	timer()
function	in	the	local	module	mytimer	that	we’ll	import	into	the	VPA	script;	this
will	allow	us	to	set	a	timer	by	using	voice	commands.

Tell	the	Time	with	Python
Let’s	first	learn	how	to	tell	time	with	Python.

The	following	script,	get_time.py,	shows	how	to	retrieve	the	current	time	for
your	time	zone	in	different	formats.	This	is	just	an	example	so	you	can
familiarize	yourself	with	the	arrow	module;	it’s	not	part	of	the	VPA	script.

import	arrow

#	Current	time	in	HH:MM:SS	format

1	current_time	=	arrow.now().format('H:m:s')

print('the	current	time	is',	current_time)

2	current_time12	=	arrow.now().format('hh:mm:ss	A')

print('the	current	time	is',	current_time12)

#	We	can	also	print	out	hour,	minute,	and	second	individually

3	print("the	current	hour	is",arrow.now().format('H'))

print("the	current	minute	is",arrow.now().format('m'))

print("the	current	second	is",arrow.now().format('s'))

We	first	import	the	arrow	module.	Its	now()	function	gives	you	the	current
local	date	and	time,	but	you	need	to	use	format()	to	let	the	script	know	the
format	and	level	of	detail	of	that	information.

Table	7-1	lists	some	commonly	used	formats	and	the	meanings	associated
with	the	format()	function	in	arrow.	For	example,	the	uppercase	HH	and	H
generate	the	current	hour	value	in	a	24-hour	clock,	with	and	without	a	leading	0,
respectively,	whereas	hh	and	h	do	the	same	in	a	12-hour	clock.

NOTE

For	a	complete	list	of	all	formats	and	their	meanings	associated	with
format()	in	the	arrow	module,	go	to
https://arrow.readthedocs.io/en/latest/.

At	1,	we	retrieve	the	current	time	in	H:m:s	format	on	a	24-hour	clock	and
then	print	it	out.	At	2,	we	obtain	the	time	on	a	12-hour	clock,	followed	by	AM
or	PM,	in	the	format	hh:mm:ss.	Finally	we	print	out	just	the	hour	value	of	the
current	time	3.	You	can	do	the	same	for	the	minute	value	or	the	second	value.

If	you	run	this	script,	you’ll	have	output	similar	to	the	following:

the	current	time	is	8:35:46

the	current	time	is	08:35:46,AM

https://arrow.readthedocs.io/en/latest/

the	current	hour	is	8

the	current	minute	is	35

the	current	second	is	46

Table	7-1:	Some	Commonly	Used	Formats	for	the	format()	Method	of	the	arrow	Module

Format	code Meaning

dddd Full	weekday	name

ddd Abbreviated	weekday	name

MMM Abbreviated	month	name

MMMM Full	month	name

YYYY Year	in	normal	form	(for	example,	2021)

HH Hour	(24-hour	clock)	as	a	decimal	number	with	leading	zero

hh Hour	(12-hour	clock)	as	a	decimal	number	with	leading	zero

A AM	or	PM

mm Minute	as	a	decimal	number	with	leading	zero

ss Second	as	a	decimal	number	with	leading	zero

You	can	also	use	the	arrow	module	to	get	today’s	date	and	weekday
information,	shown	here	in	the	get_date.py	script:

import	arrow

#	Get	today's	date

1	today_date	=	arrow.now()

#	Print	today's	date	in	different	formats

2	print("today	is",	today_date.format('MMMM	DD,	YYYY'))

print("today	is",	today_date.format('MMM	D,	YYYY'))

print("today	is",	today_date.format('MM/DD/YYYY'))

#	Print	today's	weekday	in	different	formats

3	print("today	is",	today_date.format('dddd'))

print("today	is",	today_date.format('ddd'))

At	1,	we	use	now()	to	generate	the	current	date	and	time	and	save	it	in	a
string	variable	today_date.	At	2,	we	print	out	the	date	in	the	format	of	January
01,	2021,	with	an	abbreviated	form	of	the	month	name,	and	in	numbers	using	the
pattern	MM/DD/YYYY.	At	3,	we	print	out	the	day	of	the	week	and	then	again
in	abbreviated	form.

This	script	generates	output	similar	to	the	following:

today	is	March	01,	2021

today	is	Mar	01,	2021

today	is	03/01/2021

today	is	Monday

today	is	Mon

Now	that	you	know	how	to	tell	time	in	Python,	you’ll	learn	how	to	set	a	timer.

Build	a	Timer
We’ll	use	our	new	arrow	module	skills	with	the	sleep()	function	from	the	time
module	to	build	a	timer	that	takes	written	commands.	You	won’t	use	this	in	your
VPA	script,	but	you’ll	learn	the	skills	needed	to	build	a	timer	that	takes	voice
commands.

We’ll	restrict	the	input	to	take	hours	only,	minutes	only,	or	hours	and	minutes
(the	script	won’t	take	seconds).	So	you	can	set	the	timer	to	go	off	in	2	hours,	or
in	1	hour	30	minutes,	or	in	20	minutes—but	not	in	1	hour	30	minutes	20
seconds.

Before	we	go	into	the	details	of	the	script,	let’s	understand	the	logic	behind	it.
Your	written	command	should	be	in	the	form	of	set	a	timer	for	1	hour	20
minutes,	set	a	timer	for	2	hours,	or	set	a	timer	for	25	minutes.	The
script	then	saves	your	written	command	in	the	string	variable	inp.

The	string	method	find()	returns	a	value	of	-1	if	the	characters	you’re
looking	for	are	not	in	the	string.	We’ll	use	this	feature	to	extract	the	hour	and
minute	values	in	inp.

There	are	three	cases:

The	value	of	inp.find("hour")	is	not	-1,	while	the	value	of
inp.find("minute")	is	-1.	This	means	minute	is	not	in	the	variable	inp	but
hour	is.	You’ve	set	the	timer	in	the	form	of	set	a	timer	for	2	hours.	We
extract	the	hour	value	between	timer	for	and	hour	and	set	the	minute	value
to	0.

The	value	of	inp.find("hour")	is	-1,	and	the	value	of	inp.find("minute")
is	not	-1.	This	means	minute	is	in	the	variable	inp	but	not	hour.	You’ve	set
the	timer	in	the	form	of	set	a	timer	for	25	minutes.	We	extract	the
minute	value	between	timer	for	and	minute	and	set	the	hour	value	to	0.

Neither	the	value	of	inp.find("hour")	nor	the	value	of
inp.find("minute")	is	-1.	This	means	both	hour	and	minute	are	in	the
variable	inp.	You’ve	set	the	timer	in	the	form	of	set	a	timer	for	1	hour
20	minutes.	We	extract	the	hour	value	between	timer	for	and	hour	and	the
minute	value	between	hour	and	minute.

We’ll	add	that	amount	of	time	to	the	current	time	to	determine	when	the	timer
should	go	off.	We	then	check	the	time	every	0.5	seconds	to	make	sure	we	don’t
miss	when	the	timer	should	go	off.	When	the	time	reaches	the	preset	time,	the
timer	goes	off.

The	timer	is	set	in	timer.py	in	Listing	7-4.

import	time

import	arrow

#	Tell	you	the	format	to	set	the	timer

print('''set	your	timer;	you	can	set	it	to	the	number	of	hours,

						number	of	minutes,	

						or	a	combination	of	both	''')

#	Set	the	timer

1	inp	=	input("How	long	do	you	want	to	set	your	timer	for?\n")

#	Find	the	positions	of	"timer	for"	and	"hour"	and	"minute"

pos1	=	inp.find("timer	for")

pos2	=	inp.find("hour")

pos3	=	inp.find("minute")

#	Handle	the	case	"set	a	timer	for	hours	only"

2	if	pos3	==	-1:

				Addhour	=	inp[pos1+len("timer	for"):pos2]

				Addminute	=	0

#	Handle	the	case	"set	a	timer	for	minutes	only"

3	elif	pos2	==	-1:

				addhour=0

				addminute	=	inp[pos1+len("timer	for"):pos3]

#	Handle	the	case	for	"set	a	timer	for	hours	and	minutes"

4	else:

				Addhour	=	inp[pos1+len("timer	for"):pos2]

				Addminute	=	inp[pos2+len("hour"):pos3]

#	Current	hour,	minute,	and	second

startHH	=	arrow.now().format('H')

startmm	=	arrow.now().format('m')

startss	=	arrow.now().format('s')

#	Obtain	the	time	for	the	timer	to	go	off

newHH	=	int(startHH)+int(addhour)

newmm	=	int(startmm)+int(addminute)

5	if	newmm>59:

				newmm	-=	60

				newHH	+=	1

newHH	=	newHH%24

end_time	=	str(newHH)+":"+str(newmm)+":"+startss

print("Your	timer	will	go	off	at	"+end_time)

while	True:

				timenow	=	arrow.now().format('H:m:s')

				if	timenow	==	end_time:

							print("Your	timer	has	gone	off!")

							break

				time.sleep(0.5)

Listing	7-4:	The	script	to	set	a	timer

We	first	print	out	the	instructions.	At	1,	the	script	takes	the	user’s	written
input	specifying	how	long	to	set	the	timer,	then	saves	this	to	the	variable	inp.

WARNING

In	timer.py,	we	use	int()	to	convert	the	number	of	minutes	or	hours	to
an	integer.	Therefore,	your	input	must	be	a	natural	number	such	as	2,	5,
or	10.	You	can’t	use	a	decimal	number	such	as	2.5	hours	or	8.6	minutes
because	int()	can’t	convert	those	to	an	integer.

We	then	check	whether	the	input	included	hour	and	minute.	If	minute	is	not
in	the	input	2,	we	set	the	value	of	addminute	to	0	and	set	the	value	of	addhour
to	whatever	number	is	between	timer	for	and	hour.	We	use	similar	methods	to
handle	cases	when	hour	is	not	in	the	written	command	3	or	when	both	hour	and
minute	are	in	the	written	command	4.

The	function	now()	from	the	arrow	module	obtains	the	current	time	in	hour,
minute,	and	second	values.	We	add	the	values	of	addminute	and	addhour	to	the
current	time	to	obtain	the	time	when	the	timer	should	go	off.	At	5,	we	adjust	for
the	cases	when	the	minute	value	exceeds	59	or	the	hour	value	exceeds	23.	We
then	set	the	time	the	alarm	should	go	off	in	the	H:m:s	format.

We	start	an	infinite	while	loop	to	check	the	current	time	every	0.5	seconds.
When	the	current	time	reaches	the	alarm	time,	we	set	off	the	alarm.	The	script

prints	Your	timer	has	gone	off!	and	the	script	ends.

WARNING

The	script	timer.py	is	written	to	build	up	your	skill	set.	It	won’t	be	used
in	the	final	VPA	script,	so	we	don’t	use	exception	handling.	As	a	result,
the	script	is	easy	to	break.

Here’s	an	example	interaction	with	timer.py,	with	user	input	in	bold:

			set	your	timer;	you	can	set	it	to	the	number	of	hours,

						number	of	minutes,	

						or	a	combination	of	both

How	long	do	you	want	to	set	your	timer	for?

set	a	timer	for	1	minute

Your	timer	will	go	off	at	21:9:15

Your	timer	has	gone	off!

TRY	IT	OUT

Run	timer.py	and	set	the	timer	to	go	off	in	two	minutes.

Create	the	mytimer	Module
Now	we’ll	create	a	timer()	function	that’s	similar	to	the	timer.py	script,	but
we’ll	use	a	voice	command	instead	of	a	written	one.

Open	the	file	mytimer.py	you	just	downloaded	from	the	book’s	resources
website	and	open	it	in	your	Spyder	editor.	The	module	will	define	the	function
timer()	that	your	VPA	will	use,	shown	in	Listing	7-5.

import	time

import	arrow

from	mptpkg	import	print_say

def	timer(v_inp):

				#	Find	the	positions	of	"timer	for"	and	"hour"	and	"minute"

				pos1=	v_inp.find("timer	for")

				pos2=	v_inp.find("hour")

--snip--

				print_say("Your	timer	will	go	off	at	"+end_time)

--snip--

											print_say("Your	timer	has	gone	off!")

--snip--

Listing	7-5:	The	script	for	the	local	mytimer	module

Set	the	Timer
Now	you’ll	test	the	first	functionality	of	your	VPA.	Let’s	zoom	in	to	the	part
where	you	can	activate	the	timer	in	your	VPA	script:

--snip--

from	mptpkg	import	timer

--snip--

								#	Activate	the	timer

								elif	"timer	for"	in	inp	and	("hour"	in	inp	or	"minute"	in	

inp):

												timer(inp)

												continue								

--snip--

First,	we’ve	imported	the	timer()	function	to	the	script.	Second,	the	elif
branch	between	the	if	branch	and	else	branch	in	the	inner	while	loop	is	where
you	can	set	a	timer.

If	you	run	vpa.py,	it	will	start	in	standby	mode.	You	can	wake	it	up	by	saying,
“Hello	Python.”	Then	you	can	set	a	timer	by	saying,	“Set	a	timer	for	1	hour	20
minutes”	or	“Set	a	timer	for	2	hours.”

The	following	output	is	from	one	interaction	with	the	script,	with	my	voice
input	in	bold:

hello	Python

How	may	I	help	you?

set	a	timer	for	1	minute

You	just	said	set	a	timer	for	1	minute	

Your	timer	will	go	off	at	21:37:46

Your	timer	has	gone	off!

How	may	I	help	you?

--snip--

As	you	can	see,	I	first	activate	the	VPA	and	then	set	a	timer	for	one	minute.
The	VPA	tells	me,	“Your	timer	will	go	off	at	21:37:46.”	After	one	minute,	the
timer	goes	off.

TRY	IT	OUT

Run	VPA.py,	wake	the	VPA	up,	and	set	the	timer	to	go	off	in	two	minutes.	After	the	timer
goes	off,	ask	the	VPA	to	go	back	to	standby.

Ask	Your	VPA	to	Set	an	Alarm	Clock
Now	you’ll	learn	how	to	ask	your	VPA	to	set	an	alarm	clock.	You’ll	first	use
written	commands	to	set	the	alarm	clock.	You’ll	then	create	a	myalarm	module,
in	which	you	define	an	alarm()	function.	Finally,	you’ll	import	alarm()	to	the
VPA	script	to	set	the	alarm	clock	by	using	voice	commands.

Build	an	Alarm	Clock
Building	an	alarm	clock	is	similar	to	setting	a	timer,	except	that	we	specify	the
time	the	alarm	should	go	off	rather	than	saying	it	should	go	off	a	certain	time
from	now.	You	can	either	specify	an	hour	value	alone,	such	as	8	PM,	or	an	hour
and	minute	value,	such	as	7:25	AM.

The	script	will	take	written	commands	for	now.	The	script	alarm_clock.py	is
shown	in	Listing	7-6.

import	time

import	arrow

#	Tell	you	the	format	to	set	the	timer

print('''set	your	alarm	clock\nyou	can	use	the	format	of:\n	

						\tset	an	alarm	for	7	a.m.,	or

						\tset	an	alarm	for	2:15	p.m.''')

#	Set	the	alarm

1	inp	=	input("What	time	would	you	like	to	set	your	alarm	for?\n")

#	Find	the	positions	of	the	four	indicators

1	p1	=	inp.find("alarm	for")	

p2	=	inp.find("a.m.")	

p3	=	inp.find("p.m.")	

p4	=	inp.find(":")

#	Handle	the	four	different	cases

2	if	p2	!=	-1	and	p4	!=	-1:	

				inp=inp[p1+len("alarm	for")+1:p2]+"AM"

elif	p3	!=	-1	and	p4	!=	-1:	

				inp=inp[p1+len("alarm	for")+1:p3]+"PM"	

elif	p2	!=	-1	and	p4	==	-1:	

				inp=inp[p1+len("alarm	for")+1:p2-1]+":00	AM"

elif	p3	!=	-1	and	p4	==	-1:	

				inp=inp[p1+len("alarm	for")+1:p3-1]+":00	PM"

print(f"OK,	your	alarm	will	go	off	at	{inp}!")

3	while	True:

				#	Obtain	time	and	change	it	to	"7:25	AM"	format

				tm	=	arrow.now().format('h:mm	A')

				time.sleep(5)

				#	If	the	clock	reaches	alarm	time,	the	alarm	clock	goes	off

				if	inp	==	tm:

								print("Your	alarm	has	gone	off!")

								break

Listing	7-6:	The	script	to	set	an	alarm	clock

First,	the	script	captures	our	written	input	and	saves	it	as	the	string	variable
inp.	We	then	look	for	the	positions	of	the	four	indicators:	alarm	for,	a.m.,
p.m.,	and	:	1.	If	you	include	the	colon	in	your	input,	the	script	knows	to	check
for	a	minute	value.

Depending	on	what	you	pass	at	2,	one	of	four	scenarios	results:

You	input	a.m.	and	specify	hour	and	minute	values.	We	extract	the	preset
time	value	between	set	alarm	for	and	a.m.,	convert	it	to	a	string,	and	add
AM	at	the	end.	For	example,	if	you	input	set	an	alarm	for	7:34	a.m.,	the
returned	string	value	is	7:34	AM.

You	input	p.m.	and	specify	the	hour	and	minute	value.	We	extract	the	preset
time	value,	convert	it	to	a	string,	and	add	PM	at	the	end.	For	example,	if	you
input	set	an	alarm	for	2:55	p.m.,	the	returned	string	value	is	2:55	PM.

You	input	a.m.	but	specify	only	an	hour	value.	We	extract	the	preset	time
value,	convert	it	to	a	string,	and	add	:00	AM	at	the	end.	For	example,	if	you
input	set	an	alarm	for	7	a.m.,	the	returned	string	value	is	7:00	AM.

You	input	p.m.	but	specify	only	an	hour	value.	We	extract	the	preset	time
value,	convert	it	to	a	string,	and	add	:00	PM	at	the	end.	For	example,	if	you

input	set	an	alarm	for	3	p.m.,	the	returned	string	value	is	3:00	PM.

Once	we’ve	extracted	the	time	when	the	alarm	should	go	off,	we	start	an
infinite	loop	3.	At	each	iteration,	we	check	the	current	time	every	five	seconds
in	the	7:25	AM	format.

Finally,	we	check	whether	the	time	we	set	for	the	alarm	clock	matches	the
current	time.	If	the	times	match,	the	alarm	clock	goes	off,	and	the	script	prints
Your	alarm	has	gone	off!.

Run	the	script	and	use	it	to	set	an	alarm	clock	for	yourself.	Try	all	four	cases:
with	and	without	the	minute	value,	with	either	a.m.	or	p.m.	at	the	end.	Next,
we’ll	create	an	alarm	clock	module	based	on	this	script.

Create	the	Alarm	Clock	Module
Now	we’ll	create	the	alarm()	function	that	will	use	the	alarm_clock.py	code.
This	code	will	take	voice	input	instead	of	written	input	and	give	both	voice	and
text	output.

Open	myalarm.py,	which	you	just	downloaded	from	the	book’s	resources
website,	and	open	it	in	your	Spyder	editor.	The	script	will	define	the	function
alarm()	that	your	VPA	will	use,	shown	in	Listing	7-7.

import	time

import	arrow

from	mptpkg	import	print_say

#	Define	the	Alarm()	function

def	alarm(v_inp):

				#	Find	the	positions	of	the	four	indicators

				p1	=	v_inp.find("alarm	for")	

--snip--

Listing	7-7:	The	script	for	the	local	myalarm	module

Set	an	Alarm
Now	you	can	ask	your	VPA	to	set	an	alarm	clock	for	you.	Let’s	zoom	in	on	the
part	of	vpa.py	that	can	set	an	alarm	clock:

--snip--

from	mptpkg	import	alarm

--snip--

								#	Activate	the	alarm	clock

								elif	"alarm	for"	in	inp	and	("a.m."	in	inp	or	"p.m."	in	

inp):

												alarm(inp)

												continue

--snip--

First,	we’ve	imported	the	alarm()	function	in	the	local	myalarm	module	to
the	script	from	the	self-made	package	mptpkg.	Second,	an	elif	branch	is	in	the
inner	while	loop,	where	you	can	activate	the	alarm	clock	by	including	alarm	for
and	either	a.m.	or	p.m.	in	your	voice	command.

Run	vpa.py.	You	can	set	an	alarm	clock	after	waking	up	your	VPA.	The
following	output	is	from	one	interaction	with	the	script,	with	my	voice	input	in
bold:

hello	Python

How	may	I	help	you?

set	an	alarm	for	8:38	a.m.

You	just	said	set	an	alarm	for	8:38	a.m.	

OK,	your	alarm	will	go	off	at	8:38	AM!

Your	alarm	has	gone	off!

How	may	I	help	you?

--snip--

TRY	IT	OUT

Run	vpa.py,	wake	up	your	VPA,	and	set	an	alarm	clock	to	go	off	in	one	minute.

Ask	Your	VPA	to	Tell	a	Joke
In	this	section,	you’ll	learn	how	to	ask	your	VPA	to	tell	a	joke.	You’ll	find	a
good	joke	list	to	pull	from,	then	create	a	joke	module	and	import	it	to	your	main
script	so	that	your	VPA	can	tell	you	jokes	in	a	human	voice.

Create	Your	Joke	List

You	can	create	a	joke	list	from	many	resources.	I’m	using	the	Quick,	Funny
Jokes!	website	(https://www.quickfunnyjokes.com/math.html).

I	selected	15	jokes	and	saved	them	in	a	file	called	jokes.txt	in	the	chapter
folder	/mpt/ch07/	on	my	computer.	You	can	use	as	many	jokes	as	you	like,	as
long	as	you	also	save	them	in	a	separate	text	file	as	we	are	doing	here.	Here	are
my	15	jokes:

There	are	three	kinds	of	people	in	the	world—those	who	can	count	

and	those	who	can't.	

Without	geometry,	life	is	pointless.

Write	the	expression	for	the	volume	of	a	thick-crust	pizza	with	

height	"a"	and	radius	"z".	

Two	random	variables	were	talking	in	a	bar.	They	thought	they	

were	being	discrete,	but	I	heard	their	chatter	continuously.	

3	out	of	2	people	have	trouble	with	fractions.	

Parallel	lines	have	so	much	in	common	.	.	.	it's	a	shame	they'll	

never	meet.	

Math	is	like	love;	a	simple	idea,	but	it	can	get	complicated.	

Dear	Math,	please	grow	up	and	solve	your	own	problems;	I'm	tired	

of	solving	them	for	you.	

Dear	Algebra,	Please	stop	asking	us	to	find	your	X.	She's	never	

coming	back,	and	don't	ask	Y.	

Old	mathematicians	never	die;	they	just	lose	some	of	their	

functions.	

I	strongly	dislike	the	subject	of	math;	however,	I	am	partial	to	

fractions.	

Zenophobia	is	the	irrational	fear	of	convergent	sequences.	

Philosophy	is	a	game	with	objectives	and	no	rules.	Mathematics	is	

a	game	with	rules	and	no	objectives.	

Classification	of	mathematical	problems	as	linear	and	nonlinear	

is	like	classification	of	the	universe	as	bananas	and	non-

bananas.

https://www.quickfunnyjokes.com/math.html

A	circle	is	just	a	round	straight	line	with	a	hole	in	the	middle.

Next,	you’ll	learn	in	detail	how	to	create	the	joke-telling	module.

Create	a	Joke	Module
In	this	section,	you’ll	create	a	joke()	function.	When	the	function	is	called,	it
will	go	to	the	file	jokes.txt	on	your	computer,	access	its	content,	and	break	it	into
individual	jokes	and	put	them	in	a	list.	It	will	then	randomly	select	a	joke	from
the	list	and	read	it	out	loud	to	you.

We’ll	import	the	script	myjoke.py,	shown	in	Listing	7-8,	as	a	local	module	in
your	VPA.

1	import	random

from	mptpkg	import	print_say

#	Define	the	joke()	function

2	def	joke():

				#	Read	the	content	from	the	file	jokes.txt

				with	open('../ch07/jokes.txt','r')	as	f:

								content	=	f.read()

				#	Split	the	content	at	double	line	breaks

		3	jokelist	=	content.split('\n\n')

				#	Randomly	select	a	joke	from	the	list

				joke	=	random.choice(jokelist)

				print_say(joke)

Listing	7-8:	The	script	to	create	a	joke	module

First,	we	import	the	random	module,	which	we’ll	use	to	randomly	select	a
joke	from	the	list.	At	1,	we	start	the	definition	of	joke().

We	then	read	the	content	from	jokes.txt	and	put	the	content	in	the	string
variable	content	2.	Note	that	since	we	put	jokes.txt	in	a	different	directory
from	the	module	script	myjoke.py,	we	need	to	specify	the	path	of	the	file,	and
../ch07/	tells	Python	that	the	file	is	in	a	parallel	folder	called	mptpkg.	This	way,
we	can	use	the	joke-telling	functionality	in	other	chapters	as	well,	which	we	will
do	in	Chapter	17.

We	know	that	individual	jokes	are	separated	by	double	line	breaks,	so	we	use

split()	to	separate	the	content	of	the	file	into	individual	strings	and	put	them	in
the	list	jokelist	3.	We	then	randomly	select	a	joke	by	using	choice()	from	the
random	module.	Finally,	the	script	prints	out	and	speaks	aloud	the	selected	joke.

Tell	a	Joke
Now	you’ll	import	the	joke	module	you	just	created	to	your	VPA	so	that	it	can
tell	you	jokes	in	a	human	voice.	Let’s	zoom	in	on	the	part	of	vpa.py	that	can	tell
a	joke:

--snip--

from	mptpkg	import	joke

--snip--

								#	Activate	the	joke-telling	functionality

								elif	"joke"	in	inp	and	"tell"	in	inp:

												joke()

												continue

--snip--

We	first	import	the	joke()	function	in	our	newly	made	myjoke	module	from
the	local	mptpkg	package.	In	the	inner	while	loop	section	of	the	VPA	code	is	an
elif	branch,	in	which	we	tell	the	VPA	that	if	tell	and	joke	are	in	your	voice
command,	the	joke-telling	functionality	is	activated.

Here’s	the	outcome	from	one	interaction	with	the	script	vpa.py,	with	my	input
in	bold:

hello	Python

How	may	I	help	you?

tell	me	a	joke

You	just	said	tell	me	a	joke

I	strongly	dislike	the	subject	of	math;	however,	I	am	partial	to	

fractions.	

How	may	I	help	you?

--snip--

TRY	IT	OUT

The	HuffPost	website	has	a	list	of	motivational	quotes:	https://www.huffpost.com/entry/100-
motivational-quotes-t_b_4505356/.	Create	a	quote	module	to	provide	you	with	uplifting
quotes,	similar	to	the	joke	module	you	created.

https://www.huffpost.com/entry/100-motivational-quotes-t_b_4505356/

Send	Hands-Free	Email
In	this	section,	we’ll	examine	the	functionality	of	sending	email	100	percent
hands-free.	You’ll	first	learn	how	to	send	an	email	by	using	written	commands	in
Python;	this	will	give	you	the	skill	set	to	create	an	email	module	that	takes	voice
commands.	After	that,	you’ll	import	the	email	module	to	your	VPA	so	you	can
send	email	with	your	voice.

Send	Email	with	Written	Commands
Before	moving	on,	you	need	to	prepare	a	few	things.

First,	you	need	an	email	account	from	which	to	send	email	via	Python.	This
example	uses	my	Gmail	account,	ukmarkliu@gmail.com,	which	you	should
replace	with	your	own	email	address.

Gmail	and	many	other	email	providers	require	you	to	apply	for	a	separate
application	password,	which	is	different	from	your	regular	email	password.	For
example,	the	Google	Account	Help	page	shows	how	to	set	up	your	Gmail	app
password;	see	https://support.google.com/accounts/answer/185833/.

Sending	email	in	Python	requires	a	few	steps.	You’ll	first	need	to	connect	to
your	email	provider’s	Simple	Mail	Transfer	Protocol	(SMTP)	server.	SMTP	is	an
internet	standard	for	sending	email.	Once	the	connection	is	established,	you’ll
need	to	log	in	using	your	email	address	and	password.	You’ll	then	provide	the
recipient’s	email	address,	the	subject	line,	and	the	email	content.	Finally,	you’ll
ask	Python	to	send	the	actual	email.

The	smtplib	module	is	in	the	Python	standard	library,	so	no	installation	is
needed.	You	also	need	at	least	one	email	as	the	recipient’s	address.	You	can	use
another	one	of	your	own	email	addresses	or	ask	for	a	friend’s.

The	script	emails.py	can	take	your	written	commands	and	send	out	email
using	Python,	as	shown	in	Listing	7-9.

import	smtplib

#	Build	a	dictionary	of	names	and	emails

emails	=	{'mark':'mark.liu@uky.edu',

									'sarah':'Sarah	email	address	here',

									'chris':'Chris	email	address	here'}

#	Different	email	providers	have	different	domain	names	and	port	

numbers

mailto:ukmarkliu@gmail.com
https://support.google.com/accounts/answer/185833/

1	mysmt	=	smtplib.SMTP('smtp.gmail.com',	587)

mysmt.ehlo()

mysmt.starttls()

#	Use	your	own	login	info;	you	may	need	an	app	password

mysmt.login('ukmarkliu@gmail.com',	'{Your	password	here}')

#	Ask	for	the	name	of	the	recipient

2	name	=	input('Who	do	you	want	to	send	the	email	to?\n')

email	=	emails[name]

print(f"You	just	said	{name}.")

#	Ask	for	the	subject	line

subline	=	input('What	is	the	subject	line?\n')

print(f"You	just	said	{subline}.")

#	Ask	for	the	email	content

content	=	input('What	is	the	email	content?\n')

print(f"You	just	said	{content}.")

#	Send	the	actual	email

3	mysmt.sendmail('ukmarkliu@gmail.com',	email,	

															f'Subject:	{subline}.\nHello,	{content}.')

{}

print('Ok,	email	sent')

mysmt.quit()

Listing	7-9:	The	script	to	send	an	email	using	Python

We	import	the	smtplib	module	and	create	a	dictionary	emails	to	match	names
with	email	addresses.	This	way,	when	you	type	in	a	person’s	name,	the	script
will	retrieve	the	corresponding	email	from	the	dictionary.

At	1,	we	connect	to	the	Gmail	SMTP.	If	you	aren’t	using	Gmail,	you’ll	need
to	search	for	the	domain	name	and	port	number	of	your	email	provider.	No
change	is	needed	if	you	are	using	Gmail.

We	then	start	the	communication	with	your	email	server	and	the	Transport
Layer	Security	(TLS)	encryption.	The	TLS	encryption	is	needed	by	the	script	for
security	reasons.	Once	the	connection	is	established,	you	need	to	log	in	using
your	email	address	and	password,	so	make	sure	to	replace
ukmarkliu@gmail.com	with	your	own	email	address.	I’ve	blocked	out	my	Gmail
password	in	the	code.

The	script	then	requests	several	pieces	of	information	in	order	to	send	the
email	2.	It	first	requests	the	name	of	the	recipient,	which	you	must	already	have
stored	in	the	dictionary	emails	for	the	script	to	retrieve.	With	the	name,	the
script	retrieves	the	email	from	the	dictionary.	It	will	then	also	ask	you	for	the

email	subject	line	and	email	content,	which	you	enter	in	the	IPython	console	at
the	lower-right	corner	of	your	computer	screen.

At	3,	we	send	out	the	email	with	sendmail(),	which	takes	three	inputs:	your
email	address;	the	recipient’s	email	address;	and	the	subject	line	and	the	email
content,	separated	by	the	line	break	escape	character	\n.

Once	done,	the	script	will	confirm	that	the	email	has	been	sent.	Try	this	script
yourself	and	make	sure	that	you	can	send	email	using	Python.

Next,	we’ll	create	the	module	to	send	email	using	Python	and	then	add	it	to
your	VPA.

Create	the	Email	Module
We	first	need	to	create	the	script	myemail.py	to	use	as	a	local	module	in	your
VPA.	In	the	module,	we	define	an	email()	function.	Once	called,	it	will	connect
to	your	email	server	and	ask	you	for	voice	inputs—the	recipient’s	name,	the
subject	line,	and	the	email	content—before	sending	out	the	actual	email.

The	content	of	myemail.py	is	similar	to	that	of	emails.py,	with	a	few
differences:	the	script	will	ask	you	for	input	using	voice	as	well	as	printed
messages,	and	you	need	to	use	voice	input	instead	of	written	input.	The
differences	are	highlighted	in	Listing	7-10.

--snip--

from	mptpkg	import	voice_to_text,	print_say

#	Define	the	email()	function

def	email():

				#	Build	a	dictionary	of	names	and	emails

--snip--

				#	Voice	input	the	name	of	the	recipient

				print_say('Who	do	you	want	to	send	the	email	to?')

				name	=	voice_to_text().lower()

				email	=	emails[name]

				print_say(f"You	just	said	{name}.")

				#	Voice	input	the	subject	line

				print_say('What	is	the	subject	line?')

				subline	=	voice_to_text()

				print_say(f"You	just	said	{subline}.")

				#	Voice	input	the	email	content

				print_say('What	is	the	email	content?')

				content	=	voice_to_text()

				print_say(f"You	just	said	{content}.")

				#	Send	the	actual	email

				mysmt.sendmail('ukmarkliu@gmail.com',	email,	

																			f'Subject:	{subline}.\nHello,	{content}.')

				{}

				print_say('Ok,	email	sent.')

				mysmt.quit()

Listing	7-10:	The	script	to	create	a	local	myemail	module

As	you	can	see,	you	need	to	import	voice_to_text()	from	your	local	mptpkg
package	to	capture	your	voice	input	to	dictate	the	recipient’s	name,	email	subject
line,	and	content.	You	also	need	print_say()	from	your	local	mptpkg	package	to
print	and	speak	messages.

Now	the	module	is	ready	to	be	imported	to	the	VPA	script.

Add	the	Email	Functionality
Next,	you	need	to	import	email()	from	myemail.py	into	your	VPA	so	that	you
can	send	email	100	percent	hands-free.	Let’s	zoom	in	to	the	part	of	vpa.py	that
can	send	an	email:

--snip--

from	mptpkg	import	email

--snip--

								#	Activate	the	email-sending	functionality

								elif	"email"	in	inp	and	"send"	in	inp:

												email()

												continue

--snip--

We	import	the	email()	function	in	the	local	myemail	module	from	the	local
mptpkg	package.	There’s	an	elif	branch	in	which	you	can	activate	the	email-
sending	feature.

Here’s	an	example	interaction	with	vpa.py,	with	my	voice	input	in	bold.	All
output	is	printed	as	well	as	spoken	out	loud.

hello	Python

How	may	I	help	you?

send	an	email

You	just	said	send	an	email

Who	do	you	want	to	send	the	email	to?

mark

You	just	said	mark.

What	is	the	subject	line?

this	is	from	python

You	just	said	this	is	from	python.

What	is	the	email	content?

this	email	is	sent	using	the	Python	programming	language

You	just	said	this	email	is	sent	using	the	Python	programming	

language

Ok,	email	sent

How	may	I	help	you?

--snip--

First,	you	should	wake	up	your	VPA.	After	you	say,	“Send	an	email,”	the
email	feature	is	activated.	The	VPA	then	asks	you	for	the	recipient’s	name—I
gave	my	own	name,	and	my	University	of	Kentucky	(UKY)	email	address	was
matched	to	it.	It	also	asks	for	the	subject	line	and	email	content.	Once	the
information	is	collected,	the	email	is	sent,	and	the	script	exits	the	email
functionality.

Figure	7-1	shows	the	email	I	received	as	a	result	in	my	UKY	email	account.

Figure	7-1:	An	email	sent	using	a	Python	script	100	percent	hands-free

TRY	IT	OUT

Put	your	own	email	account	and	password	in	myemail.py.	Then	place	a	legitimate	email	in
the	dictionary	emails.	Wake	up	your	VPA	and	ask	it	to	send	an	email	to	one	of	your	friends.

Summary
In	this	chapter,	you	learned	how	to	create	a	VPA	that	can	set	an	alarm	and	timer,

tell	jokes,	and	even	send	email	hands-free!	You	wake	your	VPA	with	“Hello
Python”	and	then	give	it	an	instruction	to	activate	one	of	the	four	functionalities.
This	chapter	taught	you	how	to	create	a	new	feature,	make	it	into	a	local	module,
and	use	it	in	your	main	script.

In	the	next	chapter,	you’ll	learn	how	to	use	the	WolframAlpha	API	to	tap	into
the	vast	knowledge	space	on	the	website	so	that	your	VPA	will	be	able	to	answer
(almost)	any	question.

End-of-Chapter	Exercises
1.	 Write	a	script	to	print	out	a	message	and	speak	aloud	today’s	date	and	time,

formatted	as	“Today	is	September	8,	2021,	and	the	time	now	is	09:03:07
AM.”

2.	 Modify	mywakeup.py	so	that	the	only	way	to	end	the	script	vpa.py	is	by
saying,	“Quit	the	script.”

8
KNOW-IT-ALL	VPA

The	VPA	we	created	in	Chapter	7	can	set	a
timer	or	an	alarm	clock	for	you,	tell	you
jokes,	or	send	your	email.	Now	we’ll

upgrade	it	so	you	can	ask	it	about	nearly	anything—
including	daily	news	and	weather,	gas	prices,	and	travel
information—and	tap	into	its	nearly	unlimited	knowledge
of	science,	math,	history,	and	society.
In	this	chapter,	you’ll	access	the	storehouse	of	information	in	the

computational	engine	WolframAlpha	and	use	Wikipedia	as	a	backup	if
WolframAlpha	can’t	provide	an	answer.	If	neither	site	can	answer,	your	VPA	will
tell	you,	“I	am	still	learning,	and	I	don’t	know	the	answer	to	that	yet.”	Your	VPA
will	be	complete	and	capable	of	answering	almost	any	question.

Before	you	begin,	set	up	the	folder	/mpt/ch08/	for	this	chapter.	As	always,	all
scripts	in	this	chapter	are	available	at	the	book’s	resources	page.

NEW	SKILLS

Using	APIs	with	your	Python	code

Exploring	areas	of	knowledge	in	WolframAlpha

Using	try	and	except	to	use	one	source	as	the	backup	of	another	source

Creating	a	know-it-all	functionality	for	your	VPA

Get	Answers	from	WolframAlpha
WolframAlpha	is	a	computational	knowledge	engine	that	provides	an	online
service	for	factual	queries,	with	a	focus	on	numerical	and	computational
capabilities,	especially	in	the	areas	of	science	and	technology.	In	this	section,
you’ll	learn	how	to	get	answers	from	WolframAlpha	through	its	API	and	then
write	a	Python	script	to	retrieve	information.

Apply	for	an	API	Key
The	first	step	is	to	apply	for	an	API	key.	WolframAlpha	gives	you	up	to	2,000
noncommercial	API	calls	per	month	at	no	charge.	Go	to
https://account.wolfram.com/login/create/	and	complete	the	steps	to	create	an
account,	as	shown	in	Figure	8-1.

NOTE

The	WolframAlpha	website	is	subject	to	change.	What	you	see,	and	the
API	application	process,	may	be	slightly	different	from	the	instructions
here.	Please	follow	the	instructions	you	find	at	the	website.

https://account.wolfram.com/login/create/

Figure	8-1:	Create	your	free	Wolfram	ID.

Click	Create	Wolfram	ID	and	then	log	in.	The	Wolfram	ID	itself	gives	you
only	browser	access,	so	you	need	to	get	an	AppID	to	gain	query	access	using
Python.	Apply	for	an	API	at	https://products.wolframalpha.com/api/	and	click
Get	API	Access	in	the	bottom	left,	as	shown	in	Figure	8-2.

https://products.wolframalpha.com/api/

Figure	8-2:	Apply	for	an	API	at	WolframAlpha.

A	small	dialog	should	pop	up,	as	shown	in	Figure	8-3.

Figure	8-3:	The	Get	a	New	AppID	window	at	WolframAlpha

Fill	in	the	Application	name	and	Description	information,	then	click	Get
AppID.	For	example,	you	might	enter	Virtual	assistant	as	the	application
name	and	Learn	to	build	my	own	virtual	personal	assistant	in	Python
in	the	description	field.

After	that,	your	AppID	should	appear	in	a	pop-up	window.	You	need	to	click
OK	to	activate	the	AppID.	The	key	will	be	a	long,	unique	string	of	characters	to
distinguish	you	from	other	users,	something	like	HG**************YQ	(I’ve
blocked	out	the	middle	characters).	Save	your	AppID	in	a	safe	place;	you’ll	need
it	later.

NOTE

Don’t	simply	copy	and	try	to	use	your	AppID	in	Python	before	clicking
the	OK	button	on	the	pop-up	window.	Your	AppID	is	not	activated	unless
you	click	the	OK	button.

Retrieve	Information
Once	you	have	your	WolframAlpha	API,	you	can	use	a	Python	script	to	send
queries	and	obtain	answers	from	WolframAlpha.	You	must	first	install	the	third-
party	wolframalpha	module	on	your	computer.	Go	to	your	Anaconda	prompt
(Windows)	or	a	terminal	(Mac	or	Linux)	and	activate	the	virtual	chatting
environment;	then	run	the	following	at	the	command	line:

pip	install	wolframalpha	

Follow	the	instructions	to	finish	the	installation.

The	wolfram.py	script	in	Listing	8-1	retrieves	information	from
WolframAlpha	by	using	text	input.

#	Import	the	wolframalpha	module

import	wolframalpha

#	Enter	your	own	WolframAlpha	APIkey	below

APIkey	=	"{your	WolframAlpha	APIkey}"	

wolf	=	wolframalpha.Client(APIkey)

#	Enter	your	query	

1	inp	=	input("What	do	you	want	to	know	from	WolframAlpha?\n")

#	Send	your	query	to	WolframAlpha	and	get	a	response

2	response	=	wolf.query(inp)

#	Retrieve	the	text	from	the	response

res	=	next(response.results).text	

#	Print	out	the	response

print(res)	

Listing	8-1:	Python	code	for	the	script	wolfram.py

We	first	import	the	wolframalpha	module.	Enter	the	API	key	you	retrieved
earlier	as	the	value	of	the	APIkey	variable.	Without	it,	the	script	won’t	work.

We	then	create	the	client	with	your	AppID.	At	1,	the	script	asks	the	user	for	a
query	to	send	to	WolframAlpha,	which	the	user	will	enter	in	the	IPython	console
at	the	lower-right	panel	of	the	Spyder	IDE.

At	2,	we	send	the	query	to	WolframAlpha	and	retrieve	the	result	object,
saving	it	in	the	variable	response.	The	result	object	contains	a	collection	of
results	in	a	generator	object.	Generator	functions	are	a	convenient	shortcut	to
building	iterators,	sometimes	used	to	avoid	keeping	large	amounts	of	data	in
short-term	memory	(RAM).	You	can	learn	more	about	generators	from
authoritative	online	sources	(for	example,
https://wiki.python.org/moin/Generators).	This	is	why	we	use	the	built-in
function	next()	to	iterate	through	different	answer	groups	from	WolframAlpha
in	the	result	object	and	obtain	the	text	part	of	the	answer.	For	a	detailed
description	of	how	the	querying	process	works	with	the	wolframalpha	module,
see	https://pypi.org/project/wolframalpha/.	Finally,	the	extracted	text	is	printed
out.

Here’s	a	simple	exchange	with	wolfram.py,	with	my	text	input	in	bold:

What	do	you	want	to	know	from	WolframAlpha?

How	many	states	are	in	the	USA?

50	

As	you	can	see,	WolframAlpha	has	given	me	a	correct	and	succinct	answer.

Explore	Different	Areas	of	Knowledge
WolframAlpha	can	provide	information	on	a	variety	of	topics,	so	we’ll	put
wolfram.py	through	its	paces	with	questions	about	weather,	general	knowledge,
science,	and	math	before	adding	the	API	to	your	VPA.

Real-Time	Information
WolframAlpha	provides	real-time	information,	such	as	the	current	temperature
in	your	area.	Here’s	one	interaction	with	the	script	wolfram.py,	with	my	written
input	in	bold:

https://wiki.python.org/moin/Generators
https://pypi.org/project/wolframalpha/

What	do	you	want	to	know	from	WolframAlpha?

What	is	the	temperature	outside	right	now?

87	°F

(2	hours	21	minutes	ago)

The	script	tells	you	the	temperature	in	Fahrenheit	and	the	length	of	time	that
has	passed	since	the	information	was	obtained.	WolframAlpha	gets	your	local
information	by	looking	at	the	location	associated	with	your	IP	address.	If	you
have	an	active	virtual	private	network	(VPN),	your	local	information	will	be	for
the	location	of	your	VPN	provider.

You	can	also	obtain	a	weather	forecast	for	a	specific	day	in	a	certain	location
like	so:

What	do	you	want	to	know	from	WolframAlpha?

What	is	the	weather	forecast	for	Chicago	in	2	days?

between	70	°F	and	74	°F

rain	(very	early	morning)	|	clear	(all	day)

You	can	check	other	real-time	information	such	as	local	gas	price	or	US
inflation	rate:

What	do	you	want	to	know	from	WolframAlpha?

What	is	the	current	gas	price?

$2.548/gal	(US	dollars	per	gallon)	(Monday,	February	8,	2021)

TRY	IT	OUT

Use	wolfram.py	to	find	out	the	following:

The	temperature	where	you	live

The	population	of	the	state	you	are	in

The	gas	price	in	your	area

General	Questions
You	can	ask	general	knowledge	questions,	such	as	how	many	teaspoons	are	in	a
cup,	how	to	convert	Fahrenheit	to	Celsius,	the	regional	sales	tax	rate,	a	state
capital,	and	so	on:

What	do	you	want	to	know	from	WolframAlpha?

How	many	yards	are	in	a	mile?

1760	yards

What	do	you	want	to	know	from	WolframAlpha?

What's	the	capital	of	West	Virginia?

Charleston,	West	Virginia,	United	States

What	do	you	want	to	know	from	WolframAlpha?

What	is	the	calorie	expenditure	walking	an	hour	at	5	miles	per	

hour?

energy	expenditure	|	366	Cal	(dietary	calories)

fat	burned	|	0.1	lb	(pounds)

oxygen	consumption	|	19.3	gallons

metabolic	equivalent	|	4.8	metabolic	equivalents

(estimates	based	on	CDC	standards)

What	do	you	want	to	know	from	WolframAlpha?

What	is	the	speed	of	light?

2.998×10^8	m/s	(meters	per	second)

WolframAlpha	has	gathered	information	from	various	sources	such	as	the
CIA’s	The	World	Fact	Book	and	The	United	States	Geological	Survey,	so	it	has
comprehensive	historical	data.	You	can	ask	questions	about	events,	people,	or
facts,	such	as	when	the	vehicle	airbag	was	invented:

What	do	you	want	to	know	from	WolframAlpha?

When	was	the	airbag	invented

1941

You	can	even	use	WolframAlpha	as	a	dictionary	by	using	define,	like	so:

What	do	you	want	to	know	from	WolframAlpha?

Define	obliterate

1	|	verb	|	mark	for	deletion,	rub	off,	or	erase

2	|	verb	|	make	undecipherable	or	imperceptible	by	obscuring	or	

concealing

3	|	verb	|	remove	completely	from	recognition	or	memory

4	|	verb	|	do	away	with	completely,	without	leaving	a	trace

5	|	adjective	|	reduced	to	nothingness

(5	meanings)

TRY	IT	OUT

Use	wolfram.py	to	find	out	the	following:

The	number	of	liters	in	a	gallon

The	capital	of	the	state	you	are	in	now

The	meaning	of	the	word	diligence

The	net	worth	of	Bill	Gates

The	countries	that	participated	in	World	War	I

Math	Calculations
WolframAlpha	can	answer	your	questions	in	the	fields	of	mathematics,	science,
and	technology,	ranging	from	elementary	math	to	calculus	to	differential
equations.

For	example,	if	you	want	to	convert	125	to	binary,	you	can	use	wolfram.py	as
follows:

What	do	you	want	to	know	from	WolframAlpha?

convert	125	to	binary

1111101_2

The	2	at	the	end	of	the	output	indicates	that	the	response	is	in	binary	format.
Wolfram	Alpha	can	also	answer	your	personal	finance	questions	on	topics	such
as	mortgage	payments,	credit	card	calculations,	and	state	taxes.	For	example,	to
calculate	your	monthly	mortgage	payment,	you	just	need	to	provide	three	pieces
of	information—loan	amount,	interest	rate,	and	loan	term—and	you’ll	get	the
answer:

What	do	you	want	to	know	from	WolframAlpha?

mortgage	$150,000	6.5%	30	years

monthly	payment	|	$948

Using	the	keyword	mortgage,	you	tell	the	script	the	loan	amount	$150,000,
the	interest	rate	6.5%,	and	the	term	30	years.	Know	that	the	formatting	of	your
query	doesn’t	really	matter—you	don’t	need	a	comma	in	the	number	and	you
could	provide	the	arguments	in	any	order,	and	the	script	should	understand.

TRY	IT	OUT

Use	wolfram.py	to	find	the	following:

The	monthly	mortgage	payment	if	the	loan	amount	is	$350,000,	the	interest	rate	is	3%,
and	the	term	is	15	years

The	state	sales	tax	rate	where	you	live

All	the	prime	numbers	below	100

The	heaviest	metal	in	the	periodic	table

Add	a	Know-It-All	Functionality	to	Your	VPA
Our	goal	here	is	to	add	a	know-it-all	functionality	to	the	VPA	you	created	in
Chapter	7.	We	will	rely	mainly	on	WolframAlpha	to	answer	your	questions,	but
there	are	questions	WolframAlpha	can’t	answer.	In	that	case,	we’ll	search	in
Wikipedia.	If	Wikipedia	can’t	provide	an	answer	either,	the	VPA	will	let	you
know	that	it	doesn’t	have	an	answer.

To	make	use	of	the	next	script,	be	sure	to	install	the	following	package	with
your	virtual	environment	activated:

pip	install	wikipedia	

What	WolframAlpha	Cannot	Answer
Even	though	WolframAlpha	has	a	vast	knowledge	base,	it	doesn’t	know	the
answers	to	all	questions.	Wikipedia	can	provide	more	answers	than	Wolfram
Alpha	in	certain	areas,	especially	for	general	reference	questions.	For	example,	if
you	enter	University	of	Kentucky	as	a	query	in	wolfram.py,	the	script	will
raise	a	StopIteration	exception.	This	is	because	next()	cannot	find	a	result	in
any	answer	group.

On	the	other	hand,	if	you	run	the	script	wiki.py	from	Chapter	5	and	enter
University	of	Kentucky	as	a	query,	you’ll	get	the	following	output:

The	University	of	Kentucky	(UK)	is	a	public	university	in	

Lexington,

	Kentucky.	Founded	in	1865	by	John	Bryan	Bowman	as	the	

Agricultural	and

	Mechanical	College	of	Kentucky

--snip--

Wikipedia	can’t	answer	all	your	questions,	either.	For	example,	if	you	enter
how	many	people	live	outside	the	earth	as	a	query	in	wiki.py,	the	API	will
raise	a	PageError	exception	that	causes	this	version	of	the	script	to	abruptly	end
with	an	error	status.

We’ll	improve	our	VPA	by	writing	a	script	that	queries	WolframAlpha	first
and,	if	no	results	are	found,	will	query	Wikipedia.	If	you	can’t	get	an	answer
there,	the	script	will	print	out	the	message	I	am	still	learning.	I	don't
know	the	answer	to	your	question	yet.	We’ll	handle	the	errors	raised	by
these	external	APIs	by	enclosing	the	calls	in	a	try	block	and	handling	the
exceptions	in	an	except	block.

Go	to	the	book’s	resources	page,	download	know_all.py,	and	save	it	in	your
chapter	folder.	This	script	is	shown	in	Listing	8-2.

import	wolframalpha

import	wikipedia

#	You	must	put	your	WolframApha	APIkey	below

1	APIkey	=	"{your	WolframAlpha	appID	here}"	

wolf	=	wolframalpha.Client(APIkey)

while	True:

				#	Put	your	question	here	

				Inp	=	input("What	do	you	want	to	know?\n")

				#	Stop	the	loop	if	you	type	in	"done"

				if	inp	==	"done":

								break

				#	Look	for	answer	in	Wolfram	Alpha

				res	=	wolf.query(inp)

				#	Use	try	and	except	to	handle	errors

				try:

								print(next(res.results).text)

				except:

				#	If	no	answer,	try	Wikipedia

								try:

												ans	=	wikipedia.summary(inp)

												print(ans[0:200])

								except:

								#	If	still	no	answer

												print('I	am	still	learning.	I	don\'t	know	the	answer	

to	your	question	yet')

Listing	8-2:	Python	code	for	the	script	know_all.py

We	first	import	the	two	modules	wolframalpha	and	wikipedia.	At	1,	you
should	put	your	own	WolframAlpha	AppID	in	the	script	for	it	to	work.	We	then
put	the	script	in	an	infinite	while	loop.	At	each	iteration,	it	takes	your	text	input
as	a	query.	If	you	key	in	the	word	done,	the	while	loop	stops	and	the	script	ends.

The	script	sends	the	query	first	to	WolframAlpha.	We	use	try	and	except	to
handle	any	errors	that	the	API	from	WolframAlpha	might	raise.	If	Wolfram
Alpha	doesn’t	return	an	answer,	the	script	directs	the	same	query	to	Wikipedia.	If
there’s	no	answer	found	from	Wikipedia,	the	script	prints	I	am	still
learning.	I	don't	know	the	answer	to	your	question	yet.

Now,	if	you	run	the	script	know_all.py	and	enter	University	of	Kentucky
and	How	many	people	live	outside	the	earth?	as	the	two	queries,	you’ll	get
the	following	output:

What	do	you	want	to	know?

University	of	Kentucky

The	University	of	Kentucky	(UK)	is	a	public	university	in	

Lexington,	Kentucky.	Founded	in	1865	by	John	Bryan	Bowman	as	the	

Agricultural	and	Mechanical	College	of	Kentucky,	the	university	

is	one	of	the

What	do	you	want	to	know?

How	many	people	live	outside	the	earth?

I	am	still	learning.	I	don't	know	the	answer	to	your	question	yet

What	do	you	want	to	know?

done

As	you	can	see,	the	script	never	crashes,	and	it	provides	a	result	for	the	first
query	but	not	the	second.

TRY	IT	OUT

Try	asking	three	questions	by	using	the	two	scripts	wiki.py	and	wolfram.py:	one	with	an
answer	in	WolframAlpha,	one	with	an	answer	in	Wikipedia	but	not	WolframAlpha,	and	one
with	an	answer	in	neither.	Run	the	script	know_all.py,	enter	the	three	questions	as	queries,
and	see	what	happens.

Create	the	myknowall	Module

Now	we’ll	create	the	know_all()	function	that	will	use	the	script	myknowall.py,
but	this	time	will	take	voice	commands	instead	of	written	commands	and	will
both	print	and	speak	the	response	instead	of	just	printing	out	messages.

Download	myknowall.py	from	the	book’s	resources	and	save	it	in	your	local
package	folder	/mpt/mptpkg/.	Since	we’ll	use	this	as	one	of	the	local	modules	in
the	local	package,	be	sure	to	save	it	in	the	local	package	folder	instead	of	the
chapter	folder.	The	script	will	define	the	function	know_all()	that	your	VPA	will
use,	shown	in	an	abbreviated	format	in	Listing	8-3.

--snip--

#	Import	the	print_say()	function	from	the	local	package

from	mptpkg	import	print_say

--snip--

def	know_all(v_inp):

				#look	for	answer	in	Wolfram	Alpha

				res	=	wolf.query(v_inp)

--snip--

												print_say('I	am	still	learning.	I	don\'t	know	the	

answer	to	your	question	yet')

Listing	8-3:	The	script	for	the	local	myknowall	module

The	content	of	know_all()	is	similar	to	the	script	know_all.py	except	that	the
input	and	output	include	voice.

A	VPA	That	Can	Answer	(Almost)	Any	Question	for	You
Now	you’ll	make	your	VPA	capable	of	answering	(almost)	any	question,	using
the	know_all.py	module.

First,	open	the	script	__init__.py	in	the	package	directory	/mpt/mptpkg/	on
your	computer.	Add	the	following	line	of	code	at	the	end	of	the	file	and	save	the
change:

from	.myknowall	import	know_all

This	code	imports	know_all()	from	the	myknowall	module	to	the	local
package	so	you	can	later	import	it	at	the	package	level.

Next,	open	vpa.py	from	the	previous	chapter,	add	the	following	to	the	script,
and	save	it	as	vpa.py	in	this	chapter’s	folder.	You’ll	need	to	delete	the	original
else	branch	in	the	inner	while	loop	and	replace	it	with	the	following:

#	Import	the	know_all()	function	from	the	local	package

from	mptpkg	import	know_all

--snip--

								#	Activate	the	Know-It-All	functionality

								else:

												if	len(inp)>6:

																know_all(inp)

												continue								

--snip--

We	import	know_all()	from	the	local	mptpkg	package	and	replace	the
original	else	branch.	In	vpa.py	in	Chapter	7,	if	none	of	the	four	functionalities	is
activated,	the	script	goes	to	the	next	iteration.	In	the	new	script	vpa.py,	if	none	of
the	four	functionalities	is	activated,	the	know-it-all	functionality	is	activated,	and
by	default	the	script	searches	for	answers	in	WolframAlpha	and	Wikipedia.

Note	here	that	we’ve	added	a	condition	if	len(inp)>6	before	we	call
know_all().	Without	the	condition,	if	you	don’t	say	anything	for	a	long	period
of	time,	the	script	treats	the	input	as	an	empty	string.	As	a	result,	you’ll	keep
hearing	the	answer	I	am	still	learning.	I	don't	know	the	answer	to
your	question	yet.	With	the	condition,	if	you	don’t	say	anything,	the	script
goes	to	the	next	iteration	without	doing	anything	because	the	length	of	an	empty
string	is	0.

Run	vpa.py	and	wake	it	up	by	saying,	“Hello	Python.”	After	that,	you	can	ask
any	question	you	want.	Here’s	the	output	from	an	example	interaction	with	the
script,	with	my	voice	input	in	bold:

hello	Python

how	may	I	help	you?

who	was	us	president	in	1981

you	just	said	who	was	us	president	in	1981

Jimmy	Carter	(from	January	20,	1977	to	January	20,	1981)

Ronald	Reagan	(from	January	20,	1981	to	January	20,	1989)

how	may	I	help	you?

coronavirus

you	just	said	coronavirus

Coronaviruses	are	a	group	of	related	RNA	viruses	that	cause	

diseases	in	mammals	and	birds.	In	humans,	these	viruses	cause	

respiratory	tract	infections	that	can	range	from	mild	to	lethal.	

Mild	illness

--snip--

As	you	can	see,	after	activating	the	VPA,	I	first	asked	who	the	US	president
was	in	1981.	The	answer	includes	two	presidents,	because	the	transition	of
power	was	in	January	1981.	After	that,	I	asked	about	the	coronavirus.	The	VPA
provided	a	detailed	answer	to	the	question.

NOTE

The	condition	if	len(inp)>6	means	your	query	must	contain	at	least
seven	characters.	You	can	change	the	cutoff	value	in	the	condition	from
6	to	a	smaller	number	such	as	5	or	3	if	you	want	know_all()	to	be
called	even	if	you	send	a	short	query	such	as	“wolf”	or	“Python.”

TRY	IT	OUT

Run	vpa.py,	wake	it	up,	and	ask	via	voice	the	same	three	questions	you	used	in	the
preceding	Try	It	Out	on	page	164,	and	see	what	happens.

Summary
In	this	chapter,	you	upgraded	the	VPA	from	Chapter	7	so	you	can	ask	it	just
about	anything—including	for	up-to-date	information	about	weather,	gas	prices,
and	travel	conditions,	as	well	as	nearly	unlimited	facts	about	science,	math,
history,	and	society.

You	learned	to	apply	for	an	API	and	gain	access	to	the	vast	knowledge	base	in
the	computational	engine	WolframAlpha,	and	you	can	use	Wikipedia	as	a
backup	when	WolframAlpha	can’t	provide	an	answer.	If	neither	site	can	answer,
your	VPA	tells	you	as	much.	With	that,	your	VPA	is	complete	and	capable	of
answering	almost	any	question	for	you.	Using	APIs	like	this	is	an	incredibly
powerful	skill.

In	the	next	couple	of	chapters,	you’ll	learn	how	to	create	your	own	voice-
controlled	graphical	games	that	can	speak	to	you.

PART	III
INTERACTIVE	GAMES

9
GRAPHICS	AND	ANIMATION	WITH	THE

TURTLE	MODULE

Our	goal	in	the	next	few	chapters	is	to
build	voice-controlled	graphical	games
such	as	tic-tac-toe,	Connect	Four,	and

guess-the-word.	You’ll	do	all	these	with	the	turtle
module.
In	this	chapter,	you	won’t	be	working	with	voice	interactivity.	Instead	you’ll

learn	the	turtle	module’s	basic	commands	that	will	let	you	set	up	a	turtle	screen,
draw	shapes,	and	create	animations.	This	functionality	will	be	the	basis	for	all
the	games	you’ll	be	building.

Before	you	begin,	set	up	the	folder	/mpt/ch09/	for	this	chapter.	As	always,	all
scripts	in	this	chapter	are	available	at	the	book’s	resources	page,
https://www.nostarch.com/make-python-talk/.

NEW	SKILLS

Getting	started	with	the	turtle	module

Learning	movements	such	as	forward/backward	and	right/left	turns

Creating	basic	shapes	such	as	dots,	triangles,	rectangles,	and	gridlines

Creating	animation	effects

Using	multiple	turtles

https://www.nostarch.com/make-python-talk/

Basic	Commands
The	turtle	module	allows	us	to	use	a	robotic	turtle	to	draw	shapes	and	create
animations	on	a	canvas.	The	turtle	mimics	the	way	people	draw	on	a	physical
canvas,	but	we	use	commands	to	move	the	turtle	and	create	the	drawings.

For	its	underlying	graphics,	the	turtle	module	uses	the	tkinter	module,	which
is	Python’s	de	facto	standard	graphical	user	interface	(GUI)	package.	Both	turtle
and	tkinter	are	in	the	Python	standard	library,	so	there’s	no	need	to	install	them.

Turtle	graphics	were	invented	in	the	1960s,	three	decades	before	the	Python
language.	The	turtle	module	allows	Python	programmers	to	take	advantage	of
many	features	of	turtle	graphics.	The	first	is	their	simplicity:	turtle	is	easier	to
learn	than	other	game	modules	such	as	pygame	or	tkinter.	The	turtle	module	is
also	intuitive,	making	it	easy	to	create	pictures	and	shapes	by	manipulating	the
drawing	pen	on	a	canvas	(that	is,	the	screen).

The	turtle	module	is	also	better	suited	to	voice	activation.	Unlike	other	game
modules,	which	constantly	run	through	a	game	loop	too	fast	to	capture	voice
commands,	turtle	scripts	don’t	need	a	game	loop.	This	makes	voice-controlled
games	possible.

Create	a	turtle	Screen
To	use	turtle,	you	need	to	create	a	turtle	screen	to	contain	all	objects	in	the	script.
The	following	script	shows	you	a	simple	example	of	the	turtle	screen.	Enter	the
following	lines	of	code	in	Spyder	and	save	the	script	as	set_up_screen.py:

import	turtle	as	t

1	t.Screen()

t.setup(600,500,100,200)

t.bgcolor('SpringGreen3')

2	t.title('Setting	Up	a	Screen	with	Turtle	Graphics')

t.done()

t.bye()	

We	import	the	turtle	module	and	give	it	a	short	alias	name,	t.	This	is	one
situation	where	a	short	alias	module	name	is	beneficial,	since	we’ll	be	calling
multiple	functions	from	the	module,	and	often.	Therefore,	we	want	to	use	only
t.,	instead	of	turtle.,	in	front	of	all	the	functions.

At	1,	we	create	a	screen	by	using	Screen(),	which	doesn’t	require
arguments.	We	then	use	setup()	to	specify	the	size	and	location	of	the	screen.
The	four	parameters	are	screen	width,	screen	height,	horizontal	distance	from	the
top	left	of	your	computer	screen,	and	vertical	distance	from	the	top	left	of	your
computer	screen,	in	that	order.	Our	screen	will	be	600	pixels	wide	and	500	pixels
tall,	100	pixels	from	the	left	edge	of	the	computer	screen,	and	200	pixels	from
the	top	edge.

Next,	we	give	the	turtle	screen	a	background	color	by	using	bgcolor().	The
turtle	module	provides	a	wide	range	of	colors,	including	brown,	black,	gray,
white,	yellow,	gold,	orange,	red,	purple,	navy,	blue,	lightblue,	darkblue,
cyan,	turquoise,	lightgreen,	green,	and	darkgreen.

NOTE

For	a	more	comprehensive	list	of	colors	in	the	turtle	and	tkinter
modules,	see	https://www.tcl.tk/man/tcl8.4/TkCmd/colors.htm.

At	2,	we	give	a	title	to	the	screen,	which	you’ll	see	at	the	top	beside	the	turtle
graphics	symbol	(Figure	9-1).

The	done()	command	tells	the	script	to	start	the	event,	which	is	how	objects
on	the	screen	could	be	animated.	The	bye()	command	tells	the	script	to	exit
turtle	when	you	click	the	X	symbol.

The	screen	should	look	something	like	Figure	9-1.

https://www.tcl.tk/man/tcl8.4/TkCmd/colors.htm

Figure	9-1:	Set	up	the	size,	background	color,	and	title	of	the	screen.

A	turtle	screen	uses	a	Cartesian	coordinate	system,	with	the	center	coordinate
(x	=	0,	y	=	0).	The	x-value	increases	from	left	to	right,	and	the	y-value	increases
from	bottom	to	top,	just	like	the	two-dimensional	plane	you	learned	in	high
school	mathematics.

NOTE

In	turtle,	the	point	(x	=	0,	y	=	0)	is	at	the	center	of	the	screen.	This	is
different	from	most	other	graphical	modules	such	as	pygame	or	tkinter,
which	have	the	point	(x	=	0,	y	=	0)	at	the	top-left	corner.

Create	Movements
In	earlier	days,	the	turtle	cursor	was	literally	a	picture	of	a	turtle	moving	around
on	the	screen.	Now,	instead	of	a	literal	turtle,	you	see	a	small	arrowhead	as	the

default	cursor.	The	turtle	has	three	attributes:	location,	direction,	and	a	pen.	You
can	adjust	the	color	and	width	of	the	pen,	and	you	can	decide	whether	to	put	the
pen	down	on	the	plane	so	the	turtle’s	path	is	marked	when	it	moves	or	lift	it	up
so	the	movement	isn’t	tracked.

Let’s	see	an	actual	drawing	before	looking	at	the	various	movements	in	the
module.	Enter	the	code	shown	in	Listing	9-1	in	a	Spyder	editor	and	save	it	as
show_turtle.py	in	your	chapter	folder.

import	turtle	as	t

t.Screen()

t.setup(600,500,100,200)

t.bgcolor('SpringGreen')

t.title('Show	Turtle')

1	t.shape('turtle')

t.forward(200)

t.right(90)

t.up()

t.forward(100)

t.done()

t.bye()

Listing	9-1:	Showing	the	turtle	in	the	turtle	module

At	1,	we	change	the	shape	of	the	cursor	back	to	the	original	turtle	shape,	as
you	can	see	in	Figure	9-2.	If	you	run	the	script,	you	can	see	that	the	turtle	starts
at	position	(x	=	0,	y	=	0)	and	faces	right.	It	moves	forward	200	pixels	with	the
default	down	pen	position,	so	this	movement	draws	a	line	on	the	canvas.	We	turn
the	turtle	right	90	degrees	and	lift	up	the	pen	before	moving	forward	100	pixels.
This	time,	no	line	is	drawn	on	the	canvas	since	the	drawing	pen	is	not	touching
the	canvas.

TRY	IT	YOURSELF

Use	the	F9	key	to	run	the	code	in	show_turtle.py	one	line	at	a	time.	See	the	changes	in
cursor	shape,	pen	position,	and	cursor	movements	on	the	screen.

Figure	9-2:	The	turtle	moves	on	the	canvas	to	make	a	drawing.

Now	we’ll	discuss	in	detail	some	basic	movements	in	the	turtle	module	that
are	useful	for	our	projects.

The	forward()	and	backward()	Functions
The	forward()	function	tells	the	turtle	to	move	forward	the	specified	number	of
pixels	on	the	screen.	The	backward()	function	does	the	same	backward.	Enter
the	code	shown	in	Listing	9-2	in	a	Spyder	editor	and	save	it	as
forward_backward.py	in	your	chapter	folder.

import	turtle	as	t

t.Screen()

t.setup(600,500,100,200)

t.bgcolor('blue')

t.title('Movements	in	Turtle	Graphics')

1	t.forward(200)

2	t.backward(300)

t.done()

t.bye()

Listing	9-2:	Basic	movement	functions	in	the	turtle	module

We	set	up	the	screen	with	a	different	background	color	and	a	title.	At	1,	the
turtle	moves	forward	200	pixels.	The	default	starting	position	of	the	turtle	is	at	(x
=	0,	y	=	0),	facing	to	the	right,	so	moving	forward	200	pixels	leads	the	turtle	to
the	point	(x	=	200,	y	=	0).

At	2,	the	turtle	moves	from	the	point	(x	=	200,	y	=	0)	backward	300	pixels,
ending	up	at	(x	=	–100,	y	=	0).

TURTLE	ADJUSTMENTS	IN	SPYDER

When	you	run	turtle	scripts	in	Spyder,	the	turtle	scripts	crash	with	a	Terminator	error	after
multiple	runs	in	the	same	IPython	console	instance.	This	is	a	known	problem	for	turtle	scripts
in	Spyder.	To	avoid	the	crash	and	the	error	message,	we’ll	use	try	and	except	for	the
remainder	of	the	book,	starting	in	the	script	left_right.py.

The	left()	and	right()	Functions
The	left()	or	right()	function	changes	the	direction	the	turtle	is	facing.	As	the
argument,	we	give	the	degree	of	the	angle	to	move	by.	For	example,	90	degrees
turns	the	turtle	perpendicular	to	the	original	direction.	A	degree	value	of	360
turns	the	turtle	in	a	full	circle	so	it’s	still	going	in	the	original	direction.

The	script	left_right.py	in	Listing	9-3	shows	how	the	left()	and	right()
functions	work.

import	turtle	as	t

t.Screen()

t.setup(600,500,100,200)

t.bgcolor('light	blue')

t.title('Python	Turtle	Graphics')

1	t.pensize(5)

2	t.right(30)

t.forward(200)

t.left(30)

t.backward(400)

t.left(90)

3	t.pencolor('red')

t.forward(200)

t.done()

try:

				t.bye()

except	Terminator:

				print('exit	turtle')

Listing	9-3:	Python	code	for	left_right.py

The	pensize()	function	specifies	the	thickness	of	the	line	the	turtle	is	drawing
1.	The	default	value	is	1	pixel.	Here	we	set	the	pen	size	to	5	pixels.	At	2,	we
tell	the	turtle	to	turn	right	30	degrees.	Then,	we	move	the	turtle	forward	200
pixels.	We	then	turn	the	turtle	left	30	degrees	and	move	backward	400	pixels.

The	pencolor()	function	changes	the	color	of	the	drawing	pen	to	red	3.	The
default	is	black.	After	this	step,	the	lines	will	be	red	instead	of	black.

Run	the	script	and	you	should	see	a	screen	similar	to	Figure	9-3.

Figure	9-3:	The	left()	and	right()	functions	in	the	turtle	module

TRY	IT	OUT

Run	left_right.py	and	then	add	more	activity:	change	the	pen	color	to	green,	make	a	90-
degree	right	turn,	and	move	forward	250	pixels.

The	goto()	Function
The	goto()	function	tells	the	turtle	to	go	to	the	specified	point	on	the	screen.
Together	with	up()	and	down(),	it	can	create	straight	lines	and	dashed	lines.	The
up()	function	means	the	turtle	pen	is	not	touching	the	canvas	and	so	doesn’t
draw	as	it	moves.	The	down()	function	puts	the	pen	on	the	canvas	and	creates
drawings.

If	the	turtle	pen	is	in	the	down	position,	goto()	will	create	a	straight	line
between	the	current	position	and	the	specified	position.	However,	if	the	turtle
pen	is	in	the	up	position,	goto()	will	create	nothing	on	the	screen,	but	merely
moving	the	turtle	from	the	current	position	to	the	specified	position.	Dashed
lines	can	be	created	by	drawing	a	sequence	of	short	lines	with	spaces	in	between.

Enter	the	script	create_lines.py	in	Listing	9-4.

import	turtle	as	t

t.Screen()

t.setup(600,500,100,200)

t.bgcolor('lightgreen')

t.title('Python	Turtle	Graphics')

t.pensize(6)

1	t.goto(200,100)

2	t.up()

t.pencolor('blue')

3	for	i	in	range(8):

				t.goto(-200+50*i,-150)

				t.down()

				t.goto(-200+50*i+30,-150)

				t.up()

4	t.hideturtle()

t.done()

try:

				t.bye()

except	t.Terminator:

				print('exit	turtle')

Listing	9-4:	Python	code	for	create_lines.py

At	1,	we	tell	the	turtle	to	go	to	(x	=	200,	y	=	100).	By	default,	the	turtle	is	in
the	down	position	and	the	starting	position	is	(x	=	0,	y	=	0),	so	goto(200,100)
draws	a	line	between	the	two	points	(0,	0)	and	(200,	100),	as	you	can	see	in
Figure	9-4.

At	2,	the	script	tells	the	turtle	to	lift	up	the	pen	so	that	no	line	is	drawn	on	the
screen	when	the	turtle	goes	to	another	point.	We	then	change	the	pen	color	to
blue.	At	3,	we	start	a	for	loop.	In	each	iteration,	the	turtle	goes	to	a	point,	puts
down	the	pen,	and	goes	to	another	point	30	pixels	to	the	right.	This	leaves	a	30-
pixel-long	dash,	done	eight	times	with	gaps	between.

The	hideturtle()	function	hides	the	turtle	so	that	the	black	arrow	cursor	is
not	shown	on	the	screen	4.

Run	the	script	and	you	should	see	a	screen	similar	to	Figure	9-4.

Figure	9-4:	Use	the	goto()	function	to	create	lines	using	the	turtle	module.

TRY	IT	OUT

Run	create_lines.py	and	then	add	another	eight-dash	line	100	pixels	above	the	existing
eight-dash	line.

Basic	Shapes
The	turtle	module	has	several	built-in	shapes,	including	the	commonly	used
dot()	function	that	creates	a	dot.	You’ll	also	learn	how	to	create	basic	shapes
such	as	a	triangle,	a	square,	and	gridlines.

Use	the	dot()	Function
The	dot()	function	creates	a	dot	with	the	specified	diameter	and	color.	For
example,	the	command	dot(30,'red')	creates	a	red	dot	with	a	diameter	of	30
pixels.	We’ll	use	this	in	our	tic-tac-toe	and	Connect	Four	games	to	create	game
pieces.

Listing	9-5,	dots.py,	shows	how	the	dot()	function	works.

import	turtle	as	t

t.Screen()

t.setup(600,500,100,200)

t.bgcolor('lightgreen')

t.title('Python	Turtle	Graphics')

1	t.up()

t.goto(150,100)

t.dot(120,'red')

t.goto(-150,100)

t.dot(135,'yellow')

2	t.goto(150,-100)

t.dot(125,'blue')

t.goto(-150,-100)

t.dot(140,'green')

t.hideturtle()

t.done()

try:

				t.bye()

except	t.Terminator:

				print('exit	turtle')

Listing	9-5:	Python	code	for	dots.py

First	we	lift	up	the	pen	1.	Then	we	go	to	the	point	(150,	100).	We	tell	the
turtle	to	put	a	red	dot	centered	on	the	point	(150,	100)	and	with	a	diameter	of	120
pixels.

Next,	we	move	the	turtle	to	(–150,	100)	and	draw	a	yellow	dot	with	a	diameter
of	135	pixels.	Note	that	you	don’t	need	to	use	up()	again	since	the	pen	is	already
lifted	up.	With	the	pen	up,	the	turtle	can	still	draw	dots.

Starting	from	2,	the	turtle	goes	to	(150,	–100)	and	draws	a	blue	dot	with	a
diameter	of	125	pixels.	Then	it	goes	to	(–150,	–100)	and	draws	a	green	dot	with
a	diameter	of	140	pixels.	Figure	9-5	shows	the	outcome.

Figure	9-5:	Create	dots	using	the	turtle	module.

Draw	Your	Own	Shapes
You	can	also	draw	your	own	shapes	using	the	turtle	module.	We’ll	look	at	some
basic	shapes	here.

Triangles
The	easiest	way	to	create	a	triangle	is	by	using	goto().	Listing	9-6,	triangle.py,
draws	a	triangle	with	the	corners	at	(–50,	–50),	(50,	–50),	and	(0,	100).

from	turtle	import	*

Screen()

setup(600,500,100,200)

bgcolor('springgreen3')

title('Python	Turtle	Graphics')

hideturtle()

tracer(False)

1	pencolor('blue')

pensize(5)

up()

goto(-50,-50)

down()

goto(50,-50)

goto(0,100)

goto(-50,-50)

update()

done()

try:

				bye()

except	Terminator:

				pass

Listing	9-6:	Python	code	for	triangle.py

The	tracer()	function	tells	the	script	whether	to	trace	the	movements	of	the
turtle.	The	default	value	is	tracer(True),	which	means	the	script	shows	you	the
movement	of	the	turtle	step-by-step.	When	the	turtle	pen	draws	something,
you’ll	see	the	drawing,	one	stroke	after	another.	Here,	we	use	tracer(False),	so
the	final	drawing	is	printed,	but	the	script	doesn’t	show	the	intermediate	steps.

We	change	the	pen’s	color	to	blue	1	and	its	size	to	5.	We	lift	up	the	pen	and
go	to	point	(–50,	–50)	then	put	down	the	pen	and	go	to	point	(50,	–50).	This
forms	the	first	leg	of	the	triangle.	With	the	pen	down,	we	ask	the	turtle	to	go	to
point	(0,	100),	which	forms	the	second	leg.	The	base	is	drawn	when	we	send	the
pen	back	to	point	(–50,	–50)	to	complete	the	triangle.

Note	that	since	we’ve	used	the	command	tracer(False)	to	not	display	each
drawing	step	(thus	saving	time),	we	need	to	put	update()	at	the	end	of	the	script

to	show	the	completed	picture,	as	shown	in	Figure	9-6.

Figure	9-6:	Draw	a	triangle	using	the	turtle	module.

TRY	IT	OUT

Run	triangle.py	and	add	another	triangle	with	the	following	three	points	as	corners:	(–100,	–
100),	(100,	100),	and	(0,	150).

Rectangles
We	can	draw	rectangles	by	using	goto(),	as	we	did	for	triangles,	but	we	can	also
use	forward()	and	left().	In	many	situations,	you	can	achieve	the	same	goal
by	using	either	the	goto()	function	or	the	forward()	and	left()	functions.	If
you	know	the	coordinates	of	the	destination,	goto()	is	easier,	and	if	you	know
the	distances	between	two	points,	the	directional	functions	are	easier.

Here,	we’ll	use	forward()	and	left().	You’ll	achieve	the	same	results	by

using	goto()	in	the	“End-of-Chapter	Exercises”	on	page	187.

We’ll	draw	a	rectangle	with	the	points	(0,	0),	(200,	0),	(200,	100),	and	(0,
100).	Enter	the	script	rectangle.py	shown	in	Listing	9-7.

import	turtle	as	t

#	Set	up	the	screen

t.Screen()

t.setup(600,500,100,200)

t.bgcolor('green')

t.title('Python	Turtle	Graphics')

t.hideturtle()

t.tracer(False)

1	t.pensize(6)

#	Draw	the	first	side

2	t.forward(200)

t.left(90)

#	Draw	the	second	side

t.forward(100)

t.left(90)

#	Draw	the	third	side

t.forward(200)

t.left(90)

#	Finish	the	rectangle

t.forward(100)

t.update()

t.done()

try:

				t.bye()

except	t.Terminator:

				print('exit	turtle')

Listing	9-7:	Python	code	for	rectangle.py

We	first	set	up	the	screen.	At	1,	we	set	the	pen	size	to	6.	We	don’t	specify	the
pen	color,	so	the	default	color	of	black	will	be	used.	At	2,	the	turtle	moves
forward	200	pixels	from	the	initial	position	of	(0,	0)	to	form	the	first	side	of	the
rectangle.

Next,	the	turtle	turns	left	90	degrees	so	that	it	faces	up.	Then	it	moves	forward
100	pixels	to	form	the	second	side.	We	then	make	the	turtle	turn	left	90	degrees
so	that	it	faces	west,	and	move	it	forward	200	pixels	for	the	third	side.	The	last
side	of	the	rectangle	is	formed	similarly.

The	output	is	shown	in	Figure	9-7.

Figure	9-7:	Draw	a	rectangle	using	the	turtle	module.

We’ll	use	this	rectangle-drawing	skill	to	create	a	board	for	our	upcoming
games.

Draw	Grid	Lines
Games	such	as	tic-tac-toe	and	Connect	Four	use	a	grid.	We	can	make	a	grid
simply	by	drawing	squares.	Here	we’ll	draw	a	game	board	with	six	rows	and
seven	columns;	the	horizontal	lines	will	be	thinner	and	lighter	than	the	vertical
ones	to	match	what	we’ll	do	in	the	Connect	Four	game.	Enter	the	code	from
grid_lines.py	in	Listing	9-8.

import	turtle	as	t

#	Set	up	the	screen

t.Screen()

t.setup(810,710,	10,	70)

t.hideturtle()

t.tracer(False)

t.bgcolor('lightgreen')

#	Draw	the	vertical	lines	to	create	7	columns

1	t.pensize(5)

for	i	in	range(-350,400,100):

				t.up()

				t.goto(i,	-298)

				t.down()

				t.goto(i,	303)

				t.up()

#	Draw	the	horizontal	lines	to	separate	the	screen	in	6	rows

2	t.pensize(1)

t.color('gray')

for	i	in	range(-300,400,101):		

				t.up()

				t.goto(-350,i)

				t.down()

				t.goto(350,i)

				t.up()			

t.done()

try:

				t.bye()

except	t.Terminator:

				print('exit	turtle')

Listing	9-8:	Python	code	for	grid_lines.py

We	first	set	up	the	screen.	Since	we	plan	to	draw	a	game	board	with	six	rows
and	seven	columns,	we	set	the	screen	size	to	810	pixels	wide	and	710	pixels	tall.
This	way,	we	can	make	each	cell	a	square	that’s	100	by	100	pixels,	with	a	55-
pixel	margin	around	the	board.	It’s	important	to	think	about	your	screen	size	so
you	can	calculate	the	coordinates	of	various	points.

We	draw	eight	thick	vertical	lines	with	a	pen	size	of	5	1	to	divide	the	screen
into	seven	columns.	The	function	range(-350,400,100)	produces	eight	values:
-350,	-250,	...,	350.

After	that,	we	draw	seven	thin,	gray,	horizontal	lines	to	form	six	rows	2.	If
you	run	the	script,	you’ll	see	a	screen	similar	to	Figure	9-8.

We’ll	use	this	board	in	Chapter	11	for	our	games.

Animation
In	this	section,	you’ll	learn	to	create	animation	by	using	clear()	and	update()
to	clear	the	current	image	and	replace	it	with	the	next,	producing	animation
frames.

Figure	9-8:	Draw	grid	lines	to	form	a	six-by-seven	game	board

How	Animation	Works
The	clear()	function	erases	everything	the	turtle	has	drawn	on	the	screen.	You
can	then	redraw	objects	and	use	update()	to	put	them	onscreen.	If	you	do	this
repeatedly,	the	rapid	replacement	of	images	will	create	an	animation	effect.

We’ll	explore	animation	by	making	a	simple	clock,	shown	in	turtle_clock.py
in	Listing	9-9.

import	turtle	as	t

import	time

import	arrow

#	Set	up	the	screen

t.setup(800,600,	10,	70)

t.tracer(False)

t.bgcolor('lightgreen')

t.hideturtle()

#	Put	the	script	in	an	infinite	loop

1	while	True:

				#	Clear	the	screen

				t.clear()

				#	Obtain	the	current	time

				current_time	=	arrow.now().format('hh:mm:ss	A')

				t.color('blue')

				t.up()

				t.goto(-300,50)

				#	Write	the	first	line	of	text

		2	t.write('The	Current	Time	Is\n',font=('Arial',50,'normal'))

				t.color('red')

				t.goto(-300,-100)

				#	Write	what	time	it	is

		3	t.write(current_time,font=('Arial',80,'normal'))

				time.sleep(1)

				#	Put	everything	on	screen

				t.update()

t.done()

try:

				t.bye()

except	t.Terminator:

				print('exit	turtle')

Listing	9-9:	Python	code	for	turtle_clock.py

We	import	the	modules	and	set	up	the	screen.	At	1,	we	start	an	infinite	loop.
In	each	iteration,	the	script	first	erases	everything	onscreen	by	using	clear().
We	then	obtain	the	current	time	by	using	the	arrow	module	and	store	the	value	in
the	variable	current_time.

The	write()	function	from	the	turtle	module	writes	text	onscreen.	It	takes	the
text	to	be	displayed	as	the	first	argument	and	the	font	to	use	as	the	second
argument.	At	2,	we	write	The	Current	Time	Is	to	the	screen	in	blue.	At	3,

the	script	writes	the	current	time	in	red.

The	script	then	pauses	for	one	second	and	makes	sure	that	all	the	new
drawings	are	updated	by	using	update().	If	you	run	the	script,	you’ll	notice	that
the	time	changes	every	second	(Figure	9-9).

Figure	9-9:	Create	animation	in	the	turtle	module.

We’ll	use	this	method	frequently	to	create	animations	in	various	games.

TRY	IT	OUT

Run	turtle_clock.py.	Then	modify	the	script	to	replace	The	Current	Time	Is	with	the	current
date	obtained	from	the	arrow	module	in	the	format	of	January	01,	2021.

Use	Multiple	Turtles
Now	we’ll	look	at	using	two	turtles	simultaneously—the	equivalent	of	using	two
pens.	In	Chapter	12,	when	we	create	a	guess-the-word	game,	we’ll	use	one	turtle

to	create	a	gold	coin	on	the	game	board	and	another	to	count	the	number	of
chances	the	player	has	left.	Whenever	the	player	misses	a	letter,	we’ll	erase	the
previous	number	and	change	it	to	the	new	number.	If	we	used	only	one	turtle,
everything,	including	the	coin	image,	would	be	wiped.	If	we	use	a	second	turtle,
we	can	keep	everything	else	onscreen	and	change	only	whatever	the	second
turtle	draws.

In	Listing	9-10,	two_turtles.py,	we’ll	use	one	turtle	to	draw	a	square	and
another	to	write	something	below	it.

import	turtle	as	t

#	Set	up	the	screen

t.setup(810,710,	10,	70)

t.tracer(False)

t.hideturtle()

t.bgcolor('lightgreen')

t.color('blue')

t.pensize(5)

1	t.up()

t.goto(-200,-100)

t.down()

t.forward(400)

t.left(90)

t.forward(400)

t.left(90)

t.forward(400)

t.left(90)

t.forward(400)

#	Create	a	second	turtle	

2	msg	=	t.Turtle()

msg.hideturtle()

msg.up()

msg.color('red')

msg.goto(-300,-200)

msg.write('this	is	written	by	the	second	turtle',font=

('Arial',30,'normal'))

t.update()

t.done()

try:

				t.bye()

except	t.Terminator:

				print('exit	turtle')

Listing	9-10:	Python	code	for	two_turtles.py

We	import	the	turtle	module	and	set	up	a	screen	with	a	size	of	810	by	710
pixels.	Starting	at	1,	we	draw	a	blue	square	in	the	middle	of	the	screen,	similar
to	the	way	we	drew	a	rectangle	but	with	all	sides	the	same	length.

At	2,	we	create	a	second	turtle	with	Turtle()	and	name	it	msg.	We	tell	the
script	to	hide	the	second	turtle

The	second	turtle	msg	lifts	up	the	pen,	changes	the	color	to	red,	goes	to	(–300,
–200),	and	writes	the	message	this	is	written	by	the	second	turtle.	The
update()	function	refreshes	the	screen	to	draw	everything	created	by	the	two
turtles,	shown	in	Figure	9-10.

Figure	9-10:	A	screen	created	with	two	turtles

TRY	IT	OUT

Run	two_turtles.py	and	then	modify	it	to	add	a	third	turtle.	Use	the	new	turtle	to	write	a
message	at	the	bottom	of	the	screen.

Summary
In	this	chapter,	you	learned	the	basics	of	the	turtle	module.	You	first	learned	how
to	set	up	a	turtle	screen	and	then	learned	basic	movements	like	going	forward	or
backward	and	turning	left	or	right.	You	created	various	shapes	by	using	both	the
built-in	function	and	basic	movement	commands.

Finally,	you	learned	to	create	animation	effects	in	the	turtle	module	by	using
the	clear()	and	update()	functions.	In	the	next	few	chapters,	you’ll	learn	how
to	use	these	skills	to	create	voice-controlled	graphical	games.

End-of-Chapter	Exercises
1.	 Modify	set_up_screen.py	so	that	the	screen	size	is	500	pixels	wide	and	400

pixels	tall,	the	background	color	is	blue,	and	the	title	is	Modified	Screen.

2.	 Modify	forward_backward.py	so	that	the	turtle	first	moves	backward	100
pixels	and	then	moves	forward	250	pixels.

3.	 Modify	dots.py	to	have	only	two	light	green	dots	with	diameters	of	60	at
points	(–100,	–100)	and	(100,	100).

4.	 Modify	triangle.py	so	that	the	three	sides	of	the	triangle	are	red	with	a
thickness	of	3.

5.	 Replicate	the	result	in	rectangle.py	by	using	goto().	You	aren’t	allowed	to
use	the	functions	forward(),	backward(),	left(),	or	right().

10
TIC-TAC-TOE

In	this	chapter,	you’ll	build	a	voice-
controlled	tic-tac-toe	game	to	put	all	your
new	skills	into	practice.	You’ll	draw	a

game	board	with	blue	and	white	game	pieces,	disallow
invalid	moves,	and	detect	if	a	player	has	won.	You’ll	then
add	the	speech	recognition	and	text-to-speech
functionality	and	set	the	game	so	you	play	with	your	own
computer.
As	usual,	all	scripts	in	this	chapter	are	available	at	the	book’s	resources	page

at	https://www.nostarch.com/make-python-talk/.	Before	you	begin,	set	up	the
folder	/mpt/ch10/	for	this	chapter.

NEW	SKILLS

Using	mouse	clicks	in	the	turtle	module

Converting	coordinates	to	cell	numbers	on	game	boards

Coding	game	rules

Using	tkinter	to	display	pop-up	message	boxes

Voice-controlling	games

Game	Rules

https://www.nostarch.com/make-python-talk/

Tic-tac-toe	is	probably	one	of	the	most	well-known	games	in	the	world,	but	just
to	be	sure,	I’ll	go	over	the	rules	before	we	create	our	game	board.	In	tic-tac-toe,
two	players	take	turns	marking	a	cell	with	an	X	or	O	in	a	three-by-three	grid.
The	first	player	to	connect	three	Xs	or	Os	in	a	row	horizontally,	vertically,	or
diagonally	wins.	If	no	one	connects	three	before	all	the	cells	are	full,	the	game	is
tied.	Instead	of	X	and	O,	we’ll	use	blue	and	white	dots	as	game	pieces.

Draw	the	Game	Board
We’ll	draw	a	three-by-three	grid	on	the	screen	and	assign	a	number	to	each	cell
so	we	can	tell	the	script	where	to	place	each	game	piece.	Open	your	Spyder
editor,	copy	the	code	in	Listing	10-1,	and	save	the	script	as	ttt_board.py	in	your
chapter	folder.

import	turtle	as	t

#	Set	up	the	screen

t.setup(600,600,10,70)

t.tracer(False)

t.bgcolor("red")

t.hideturtle()

t.title("Tic-Tac-Toe	in	Turtle	Graphics")

#	Draw	horizontal	lines	and	vertical	lines	to	form	grid

t.pensize(5)

1	for	i	in	(-100,100):

				t.up()

				t.goto(i,-300)

				t.down()

				t.goto(i,300)

				t.up()

				t.goto(-300,i)

				t.down()

				t.goto(300,i)

				t.up()

#	Create	a	dictionary	to	map	cell	numbers	to	cell	center	

coordinates

2	cellcenter	=	{'1':(-200,-200),	'2':(0,-200),	'3':(200,-200),

												'4':(-200,0),	'5':(0,0),	'6':(200,0),

												'7':(-200,200),	'8':(0,200),	'9':(200,200)}	

#	Go	to	the	center	of	each	cell,	write	down	the	cell	number

3	for	cell,	center	in	list(cellcenter.items()):

				t.goto(center)

				t.write(cell,font	=	('Arial',20,'normal'))

t.done()

try:

				t.bye()

except	t.Terminator:

				print('exit	turtle')

Listing	10-1:	Drawing	the	tic-tac-toe	game	board

We	import	all	functions	in	the	turtle	module	and	set	the	screen	to	600	by	600
pixels.	Because	we	have	a	three-by-three	grid,	each	cell	is	200	by	200	pixels.	We
set	the	background	color	to	red	and	set	the	title	as	Tic-Tac-Toe	in	Turtle
Graphics.

With	the	command	for	i	in	(-100,	100),	we	iterate	the	variable	i	through
the	range	–100	to	100	1.	As	a	result,	the	for	loop	produces	two	horizontal	lines
and	two	vertical	lines.	The	two	horizontal	lines	are	between	points	(–300,	–100)
and	(300,	–100)	and	points	(–300,	100)	and	(300,	100).	The	two	vertical	lines	are
between	points	(–100,	–300)	and	(–100,	300)	and	points	(100,	–300)	and	(100,
300).	These	lines	evenly	divide	the	screen	into	nine	cells.

We	then	create	a	dictionary	cellcenter	to	map	each	cell	number	to	the	x-	and
y-coordinates	of	the	center	of	the	corresponding	cell	2.	For	example,	the	lower-
left	cell	is	cell	number	1,	and	the	coordinates	of	its	center	are	(x	=	–200,	y	=	–
200).	We	do	this	for	all	nine	cells	in	the	dictionary,	using	the	cell	number	as	the
key	and	the	coordinates	as	the	value.

At	3,	we	use	the	for	loop	to	iterate	through	nine	pairs	of	values	to	write	the
cell	number	at	the	cell’s	center.	The	command	list(cellcenter.items())
produces	a	list	of	the	nine	key-and-value	pairs	from	cellcenter,	which	should
look	like	this:

[('1',	(-200,	-200)),	('2',	(0,	-200)),	('3',	(200,	-200)),	('4',	

(-200,	0)),

('5',	(0,	0)),	('6',	(200,	0)),	('7',	(-200,	200)),	('8',	(0,	

200)),	('9',	

(200,	200))]

At	each	iteration	of	the	for	loop,	the	turtle	goes	to	the	center	of	the	cell	and
writes	the	cell	number	there.	Run	the	script	and	you	should	see	a	screen	similar
to	Figure	10-1.

Figure	10-1:	The	board	for	tic-tac-toe

Create	the	Game	Pieces
Now	we’ll	add	code	to	place	game	pieces	in	the	cells.	You’ll	first	learn	how
mouse	clicks	work	in	the	turtle	module	and	then	use	them	to	place	the	pieces.

How	Mouse	Clicks	Work	in	turtle
When	you	left-click	on	the	turtle	screen,	the	x-	and	y-coordinates	of	the	point
you	clicked	are	displayed	onscreen.	Listing	10-2,	mouse_click.py,	handles	a
simple	mouse	click.	This	is	just	for	example	purposes;	we	won’t	use	this	code	in

the	final	script	but	will	use	the	same	principles.

import	turtle	as	t

#	Set	up	the	screen

t.setup(620,620,360,100)

t.title("How	Mouse-Clicks	Work	in	Turtle	Graphics")

#	Define	get_xy()	to	print	the	coordinates	of	the	point	you	click

1	def	get_xy(x,y):

				print(f'(x,	y)	is	({x},	{y})')

#	Hide	the	turtle	so	that	you	don't	see	the	arrowhead

t.hideturtle()

#	Bind	the	mouse	click	to	the	get_xy()	function

2	t.onscreenclick(get_xy)

3	t.listen()				

t.done()

try:

				t.bye()

except	t.Terminator:

				print('exit	turtle')	

Listing	10-2:	How	mouse	clicks	work	in	the	turtle	module

As	usual,	we	import	the	turtle	module	and	set	up	the	screen.	At	1,	we	define
the	function	get_xy(),	which	prints	out	the	x-	and	y-coordinates	of	your	click.
We	also	hide	the	turtle	so	you	don’t	see	the	cursor	moving	around	the	screen.	At
2,	we	bind	the	onscreen	mouse	click	to	the	get_xy()	function	by	using	the
turtle	function	onscreenclick(),	which	returns	the	x-	and	y-coordinates	of	the
click.	As	a	result,	onscreenclick(get_xy)	supplies	the	x-	and	y-coordinates	of
your	mouse	click	to	get_xy()	as	its	two	inputs.	At	3,	we	use	listen()	to	detect
events	like	mouse	clicks	and	keyboard	presses.

Run	mouse_click.py,	randomly	click	the	screen	several	times,	and	you	should
see	something	like	this:

(x,	y)	is	(-46.0,	109.0)

(x,	y)	is	(14.0,	-9.0)

(x,	y)	is	(-185.0,	-19.0)

(x,	y)	is	(-95.0,	109.0)

(x,	y)	is	(13.0,	-81.0)

For	each	of	my	five	clicks,	onscreenclick()	captured	the	x-	and	y-

coordinates	of	the	point	and	provided	the	two	values	to	get_xy(),	which	printed
out	the	corresponding	x-	and	y-values.

Convert	Mouse	Clicks	to	Cell	Numbers
Next,	we’ll	combine	the	board	creation	and	click	detection	scripts	so	that	when
you	click	a	cell,	the	script	prints	out	the	cell	number.	In	Figure	10-2,	I’ve	marked
the	row	and	column	numbers	on	the	game	board	along	with	the	x-	and	y-
coordinates	of	the	gridlines.

Open	ttt_board.py,	add	the	code	in	Listing	10-3	at	the	bottom	(above
t.done())	and	save	the	new	script	as	cell_number.py	in	your	chapter	folder.	This
script	is	just	an	example;	we	won’t	use	it	in	the	final	code	but	will	use	something
similar.

--snip--

for	cell,	center	in	list(cellcenter.items()):

				t.goto(center)

				t.write(cell,font	=	('Arial',20,'normal'))

#	Define	a	function	cell_number()	to	print	out	the	cell	number

1	def	cell_number(x,y):

				if	-300<x<300	and	-300<y<300:

								#	Calculate	the	column	number	based	on	x	value

						2	col	=	int((x+500)//200)

								print('column	number	is	',	col)

								#	Calculate	the	row	number	based	on	y	value

								row	=	int((y+500)//200)

								print('row	number	is	',	row)

								#	Calculate	the	cell	number	based	on	col	and	row

						3	cellnumber	=	col+(row-1)*3

								print('cell	number	is	',	cellnumber)

				else:

								print('you	have	clicked	outside	the	game	board')

#	Hide	turtle	so	that	you	don't	see	the	arrowhead

t.hideturtle()

#	bind	the	mouse	click	to	the	cell_number()	function

		onscreenclick(cell_number)

t.listen()

--snip--

Listing	10-3:	Converting	mouse	clicks	to	cell	numbers

Figure	10-2:	Mark	the	row	and	column	numbers	on	the	game	board.

At	1,	we	define	cell_number(),	which	will	convert	the	x-	and	y-coordinates
of	the	mouse	click	to	the	cell	number.	Inside	the	function,	we	restrict	the	x-	and
y-coordinates	of	the	point	you	click	to	the	range	of	the	board.	If	you	click
outside	the	range,	the	script	will	print	you	have	clicked	outside	the	game
board.

At	2,	we	convert	the	x-coordinate	of	the	click	to	the	column	number.	Points
in	column	1	have	x-coordinates	between	–300	and	–100,	and	points	in	column	2
have	x-coordinates	between	–100	and	100,	so	we	use	the	formula	col	=
int((x+500)//200)	to	get	the	full	range	of	pixel	coordinates	in	the	column	so
we	can	convert	the	x-coordinate	to	the	column	number.	We	use	the	same	method
to	convert	the	y-coordinate	to	the	row	number.

We	then	calculate	the	cell	number	by	using	the	formula	cellnumber	=	col+
(row-1)*3	because	the	cell	numbers	increase	from	left	to	right	and	then	from

bottom	to	top	3.	Finally,	we	bind	the	onscreen	click	to	cell_number().

Run	cell_number.py.	Here’s	the	output	from	one	exchange	with	the	script:

column	number	is		3

row	number	is		2

cell	number	is		6

column	number	is		1

row	number	is		3

cell	number	is		7

column	number	is		2

row	number	is		1

cell	number	is		2

Each	time	you	click	a	cell,	the	script	prints	out	the	column	number,	row
number,	and	cell	number.

TRY	IT	OUT

Run	cell_number.py	and	click	each	cell	to	make	sure	the	numbers	match	those	in	Figure	10-
2.

Place	Game	Pieces
Next,	we’ll	place	the	game	pieces	on	the	board.	When	you	first	click	any	of	the
nine	cells,	a	blue	piece	will	appear	at	the	center	of	the	cell.	When	you	click
again,	the	piece	will	be	white,	then	blue,	and	so	on.

Open	ttt_board.py,	add	the	code	in	Listing	10-4,	and	save	the	new	script	as
mark_cell.py	in	your	chapter	folder.	Make	sure	you	don’t	add	this	code	snippet
to	cell_number.py!

--snip--

for	cell,	center	in	list(cellcenter.items()):

				t.goto(center)

				t.write(cell,font	=	('Arial',20,'normal'))

#	The	blue	player	moves	first

turn	=	"blue"

#	Define	a	function	mark_cell()	to	place	a	dot	in	the	cell

1	def	mark_cell(x,y):

				#	Make	the	variable	turn	a	global	variable

		2	global	turn

				#	Calculate	the	cell	number	based	on	x	and	y	values

				if	-300<x<300	and	-300<y<300:

								col	=	int((x+500)//200)

								row	=	int((y+500)//200)

								#	The	cell	number	is	a	string	variable

						3	cellnumber	=	str(col	+	(row	-	1)*3)

				else:

								print('you	have	clicked	outside	the	game	board')

				#	Go	to	the	corresponding	cell	and	place	a	dot	of	the	

player's	color

				t.up()

		4	t.goto(cellcenter[cellnumber])

				t.dot(180,turn)

				t.update()

				#	give	the	turn	to	the	other	player

				if	turn	==	"blue":

								turn	=	"white"

				else:

								turn	=	"blue"

#	Hide	the	turtle	so	that	you	don't	see	the	arrowhead

t.hideturtle()

#	Bind	the	mouse	click	to	the	mark_cell()	function

t.onscreenclick(Mark_cell)

t.listen()

--snip--

Listing	10-4:	Placing	game	pieces	on	the	board

We	draw	the	board	and	then	define	the	variable	turn	that	will	keep	track	of
whose	turn	it	is.	We	first	assign	the	value	blue	to	the	variable	so	that	the	blue
player	moves	first.

At	1,	we	define	mark_cell(),	which	places	a	piece	in	the	cell	you	click.	At
2,	we	declare	the	global	variable	turn.	Python	provides	the	global	keyword,
which	allows	turn	to	be	used	both	inside	and	outside	mark_cell().	Without
making	the	variable	global,	you’d	get	the	error	message	UnboundLocalError:
local	variable	'turn'	referenced	before	assignment	each	time	you
clicked	the	board.

NOTE

Python	has	two	types	of	variables:	global	variables,	which	can	be
reached	anywhere	in	the	script,	and	local	variables,	which	live	only
inside	a	function	and	can’t	be	reached	outside	the	function.	By	declaring
a	global	variable,	you	make	it	reachable	everywhere	in	the	script.	In
mark_cell.py,	the	variable	turn	is	created	outside	the	function
mark_cell(),	but	because	turn	will	be	modified	in	mark_cell(),	we
need	to	make	it	accessible	in	the	global	namespace	as	well.	Otherwise,
the	change	in	the	value	of	turn	will	not	be	carried	outside	the	function.

We	then	convert	the	x-	and	y-coordinates	of	the	click	to	the	cell	number	on	the
game	board	3.	Within	the	same	line,	we	also	convert	the	cell	number	from	an
integer	to	a	string	to	match	the	variable	type	used	in	the	dictionary	cellcenter.

At	4,	we	get	the	coordinates	for	the	center	of	the	clicked	cell	from
cellcenter	and	tell	the	turtle	to	go	there.	The	turtle	places	a	dot	180	pixels	wide
and	the	color	of	the	value	stored	in	turn.	After	that,	the	turn	is	over,	and	we
assign	the	turn	to	the	other	player.	Finally,	we	bind	mark_cell()	to	the	mouse-
click	event.

Run	the	script	and	you’ll	be	able	to	click	the	board	and	mark	the	cell.	The
color	of	the	dot	will	alternate	between	blue	and	white,	as	in	Figure	10-3.

Figure	10-3:	Mark	cells	on	the	tic-tac-toe	board.

The	script	is	now	a	playable	game!	However,	we	need	to	implement	three	new
rules	to	make	it	follow	the	rules	of	tic-tac-toe:

If	a	cell	is	already	occupied,	you	cannot	mark	it	again.

If	a	player	marks	three	cells	in	a	straight	line—either	horizontally,	vertically,
or	diagonally—the	player	wins,	and	the	game	should	stop.

If	all	nine	cells	are	occupied,	the	game	should	stop,	and	a	tie	should	be	called
if	no	player	wins.

TRY	IT	OUT

Run	mark_cell.py	and	find	someone	to	play	the	game	with	you.	You’ll	need	to	adjust	your
game	play	to	make	allowances	for	the	unimplemented	rules.	Be	sure	to	use	your	own
judgment	for	the	preceding	three	rules.

Determine	Valid	Moves,	Wins,	and	Ties
Next,	we’ll	implement	those	rules,	allowing	only	valid	moves	and	declaring
wins	(or	ties).	Download	ttt_click.py	from	the	book’s	resources	and	save	it	in
your	chapter	folder	or	alter	mark_cell.py	with	the	differences	highlighted	in
Listing	10-5.

from	tkinter	import	messagebox

--snip--

#	The	blue	player	moves	first

turn	=	"blue"

#	Count	how	many	rounds	played

rounds	=	1	1

#	Create	a	list	of	valid	moves

validinputs	=	list(cellcenter.keys())

#	Create	a	dictionary	of	moves	made	by	each	player

occupied	=	{"blue":[],"white":[]}

#	Determine	if	a	player	has	won	the	game

def	win_game():	2

				win	=	False

				if	'1'	in	occupied[turn]	and	'2'	in	occupied[turn]	and	'3'	in	

occupied[turn]:

								win	=	True

				if	'4'	in	occupied[turn]	and	'5'	in	occupied[turn]	and	'6'	in	

occupied[turn]:

								win	=	True

				if	'7'	in	occupied[turn]	and	'8'	in	occupied[turn]	and	'9'	in	

occupied[turn]:

								win	=	True

				if	'1'	in	occupied[turn]	and	'4'	in	occupied[turn]	and	'7'	in	

occupied[turn]:

								win	=	True

				if	'2'	in	occupied[turn]	and	'5'	in	occupied[turn]	and	'8'	in	

occupied[turn]:

								win	=	True

				if	'3'	in	occupied[turn]	and	'6'	in	occupied[turn]	and	'9'	in	

occupied[turn]:

								win	=	True

				if	'1'	in	occupied[turn]	and	'5'	in	occupied[turn]	and	'9'	in	

occupied[turn]:

								win	=	True

				if	'3'	in	occupied[turn]	and	'5'	in	occupied[turn]	and	'7'	in	

occupied[turn]:

								win	=	True

				return	win

#	Define	a	function	mark_cell()	to	place	a	dot	in	the	cell

def	mark_cell(x,y):

				#	Declare	global	variables

				global	turn,	rounds,	validinputs	3

				#	Calculate	the	cell	number	based	on	x	and	y	values

				if	-300<x<300	and	-300<y<300:

								col	=	int((x+500)//200)

								row	=	int((y+500)//200)

								#	The	cell	number	is	a	string	variable

								cellnumber	=	str(col	+	(row	-	1)*3)

				else:

								print('you	have	clicked	outside	the	game	board')

				#	Check	if	the	move	is	a	valid	one

				if	cellnumber	in	validinputs:	4

								#	Go	to	the	corresponding	cell	and	place	a	dot	of	the	

player's	color

								t.up()

								t.goto(cellcenter[cellnumber])

								t.dot(180,turn)

								t.update()

								#	Add	the	move	to	the	occupied	list	for	the	player

								occupied[turn].append(cellnumber)	5

								#	Disallow	the	move	in	future	rounds

								validinputs.remove(cellnumber)

								#	Check	if	the	player	has	won	the	game

								if	win_game()	==	True:	6

												#	If	a	player	wins,	invalid	all	moves,	end	the	game

												validinputs	=	[]

												messagebox.showinfo("End	Game",f"Congrats	player	

{turn},	you	won!")

								#	If	all	cells	are	occupied	and	no	winner,	it's	a	tie

								elif	rounds	==	9:	7

												messagebox.showinfo("Tie	Game","Game	over,	it's	a	

tie!")

								#	Counting	rounds

								rounds	+=	1

								#	Give	the	turn	to	the	other	player

								if	turn	==	"blue":

												turn	=	"white"

								else:

												turn	=	"blue"

				#	If	the	move	is	not	a	valid	move,	remind	the	player	

				else:

								messagebox.showerror("Error","Sorry,	that's	an	invalid	

move!")

#	Bind	the	mouse	click	to	the	mark_cell()	function

t.onscreenclick(mark_cell)

--snip--

Listing	10-5:	Allow	only	valid	moves	and	declare	wins	and	ties.

Our	first	change	is	to	import	the	messagebox	module	from	the	tkinter	package;
this	module	displays	a	message	box	for	a	win,	tie,	or	invalid	move.

Starting	at	1,	we	create	a	variable	rounds,	a	list	validinputs,	and	a
dictionary	occupied.	The	variable	rounds	keeps	track	of	the	number	of	turns
taken,	which	is	the	number	of	cells	that	have	been	marked.	When	the	number	of
rounds	reaches	nine	and	no	player	wins	(which	is	often	the	case	in	tic-tac-toe),
we’ll	declare	a	tie	game.

We	use	validinputs	to	determine	whether	a	move	is	valid.	If	a	cell	is	marked
by	a	player,	we’ll	remove	it	from	the	list	of	valid	moves.

The	dictionary	occupied	keeps	track	of	each	player’s	moves.	At	the	beginning
of	the	game,	the	keys	blue	and	white	both	have	an	empty	list	as	their	value.
When	a	player	occupies	a	cell,	the	cell	number	will	be	added	to	that	player’s	list.
For	example,	if	the	blue	player	has	occupied	cells	1,	5,	and	9	and	the	white
player	has	occupied	cells	3	and	7,	occupied	will	become	{"blue":
["1","5","9"],"white":["3","7"]}.	We’ll	use	this	later	to	determine	whether
a	player	has	won	the	game.

At	2,	we	define	win_game(),	which	checks	whether	a	player	has	won	the
game.	There	are	eight	ways	a	player	can	win,	which	we	explicitly	check	for:

Cells	1,	2,	and	3	have	been	occupied	by	the	same	player.

Cells	4,	5,	and	6	have	been	occupied	by	the	same	player.

Cells	7,	8,	and	9	have	been	occupied	by	the	same	player.

Cells	1,	4,	and	7	have	been	occupied	by	the	same	player.

Cells	2,	5,	and	8	have	been	occupied	by	the	same	player.

Cells	3,	6,	and	9	have	been	occupied	by	the	same	player.

Cells	1,	5,	and	9	have	been	occupied	by	the	same	player.

Cells	3,	5,	and	7	have	been	occupied	by	the	same	player.

The	function	win_game()	creates	the	variable	win	and	assigns	False	as	a
default	value.	The	function	checks	the	dictionary	occupied	for	the	list	of	cells
occupied	by	the	player	who	currently	has	the	turn,	checking	all	eight	win	cases
listed	earlier.	If	one	of	the	cases	matches,	the	value	win	changes	to	True.	When
win_game()	is	called,	it	returns	the	value	stored	in	the	variable	win.

We’ve	made	significant	changes	to	mark_cell().	At	3,	we	declare	three
global	variables;	all	must	be	declared	global	because	they	will	be	modified
inside	the	function.	At	4,	we	check	whether	the	cell	number	most	recently
clicked	is	in	the	list	validinputs;	if	it	is,	a	dot	is	placed	in	the	cell,	and	the	cell
number	is	added	to	the	player’s	list	of	occupied	cells	5.	The	cell	is	then
removed	from	validinputs	so	that	players	can’t	mark	the	same	cell	in	future
rounds.

At	6,	we	call	win_game()	and	see	whether	the	current	player	has	won	the
game.	If	yes,	we	change	validinputs	to	an	empty	list	so	no	further	moves	can
be	made.	A	message	box	will	pop	up	to	say,	Congrats	player	blue,	you	won!
or	Congrats	player	white,	you	won!,	using	showinfo()	from	the	messagebox
module	(Figure	10-4).

Figure	10-4:	A	win	for	blue!

If	the	player	hasn’t	won,	the	script	checks	whether	the	number	of	rounds	has
reached	nine	7.	If	yes,	the	script	declares	a	tie	game,	displaying	Game	over,
it's	a	tie!	(Figure	10-5).

Figure	10-5:	A	tied	game

If	the	game	doesn’t	end,	we	increase	the	number	of	rounds	by	one	and	assign
the	turn	to	the	other	player.	During	the	game,	if	a	player	clicks	an	invalid	cell,
we’ll	display	Sorry,	that's	an	invalid	move!	(Figure	10-6).

Figure	10-6:	An	invalid	move

TRY	IT	OUT

Run	ttt_click.py	and	play	a	few	games,	generating	the	following	three	instances:	you	make
an	invalid	move,	a	player	wins	the	game,	and	the	game	is	tied.

Voice-Controlled	Version
Now	we’re	ready	to	add	the	voice	control	and	speech	functionality.	One
significant	change	is	that	we’ll	now	make	your	opponent	your	computer.	We’ll
build	on	the	latest	ttt_click.py	file.	After	you	make	a	move	as	the	blue	player,	the
computer	will	randomly	select	a	move	as	the	white	player	until	the	game	ends.

NOTE

If	you	want	to	play	a	voice-controlled	game	with	two	players,	go	to	the
book’s	resources	page	and	download	ttt_hs_2players.py.	We	discuss	only
the	one-player	version	here	to	save	space.	In	our	ultimate	VPA	in
Chapter	17,	you’ll	see	a	generalized	version	of	the	game	in	which	you
can	choose	to	play	against	a	computer	or	a	human	and	whether	you
want	to	play	first	or	second.

Download	ttt_hs.py	from	the	book’s	resources	or	make	the	changes	shown	in
Listing	10-6.

import	turtle	as	t

from	random	import	choice

from	tkinter	import	messagebox

#	Import	functions	from	the	local	package

from	mptpkg	import	voice_to_text,	print_say

--snip--

				if	'3'	in	occupied[turn]	and	'5'	in	occupied[turn]	and	'7'	in	

occupied[turn]:

								win	=	True

				return	win

#	Start	an	infinite	loop	to	take	voice	inputs

1	while	True:

				#	Ask	for	your	move

				print_say(f"Player	{turn},	what's	your	move?")

				#	Capture	your	voice	input

				inp	=	voice_to_text()

				print(f"You	said	{inp}.")

				inp	=	inp.replace('number	','')

				inp	=	inp.replace('one','1')			

				inp	=	inp.replace('two','2')

				inp	=	inp.replace('three','3')

				inp	=	inp.replace('four','4')

				inp	=	inp.replace('five','5')

				inp	=	inp.replace('six','6')

				inp	=	inp.replace('seven','7')

				inp	=	inp.replace('eight','8')

				inp	=	inp.replace('nine','9')

				if	inp	in	validinputs:

								#	Go	to	the	corresponding	cell	and	place	a	dot	of	the	

player's	color

								t.up()

								t.goto(cellcenter[inp])

								t.dot(180,turn)

								t.update()

								#	Add	the	move	to	the	occupied	list	for	the	player

								occupied[turn].append(inp)

								#	Disallow	the	move	in	future	rounds

								validinputs.remove(inp)

								#	Check	if	the	player	has	won	the	game

						2	if	win_game()	==	True:

												#	If	a	player	wins,	invalid	all	moves,	end	the	game

												validinputs	=	[]

												print_say(f"Congrats	player	{turn},	you	won!")

												messagebox.showinfo\

												("End	Game",f"Congrats	player	{turn},	you	won!")

												break

								#	If	all	cells	are	occupied	and	no	winner,	game	is	a	tie

								elif	rounds	==	9:

												print_say("Game	over,	it's	a	tie!")

												messagebox.showinfo("Tie	Game","Game	over,	it's	a	

tie!")

												break

								#	Counting	rounds

								rounds	+=	1

								#	Give	the	turn	to	the	other	player

								if	turn	==	"blue":

												turn	=	"white"

								else:

												turn	=	"blue"		

								

								#	The	computer	makes	a	random	move

						3	inp	=	choice(validinputs)

								print_say(f'The	computer	occupies	cell	{inp}.')

								t.up()

								t.goto(cellcenter[inp])

								t.dot(180,turn)

								t.update()

								occupied[turn].append(inp)

								validinputs.remove(inp)

								if	win_game()	==	True:

												validinputs	=	[]

												print_say(f"Congrats	player	{turn},	you	won!")

												messagebox.showinfo\

												("End	Game",f"Congrats	player	{turn},	you	won!")

												break

								elif	rounds	==	9:

												print_say("Game	over,	it's	a	tie!")

												messagebox.showinfo("Tie	Game","Game	over,	it's	a	

tie!")

												

												break

								rounds	+=	1

								if	turn	==	"blue":

												turn	=	"white"

								else:

												turn	=	"blue"					

				#	If	the	move	is	not	a	valid	move,	remind	the	player	

				else:

								print_say("Sorry,	that's	an	invalid	move!")

t.done()

--snip--

Listing	10-6:	Adding	speech	and	voice-control	functionality

We	import	the	functions	we’ll	need:	the	choice()	function	from	the	random
module	to	let	the	computer	randomly	select	a	move	and	our	print_say()	and
voice_to_text()	functions	from	the	custom	package	mptpkg.

At	1,	we	start	an	infinite	while	loop.	At	each	iteration,	the	script	asks	for
your	move	out	loud.	You	speak	into	the	microphone	to	make	your	move,	and	the
script	captures	your	voice	command,	storing	the	response	in	the	variable	inp.

Here	we	did	a	little	tweaking	to	make	voice_to_text()	more	responsive	to
your	voice	commands.	When	your	voice	input	is	just	one	word,	such	as	“One”	or
“Two,”	it’s	hard	for	the	software	to	put	the	word	in	context	and	respond.	On	the
other	hand,	if	you	say	“Number	one”	or	“Number	two,”	the	software	can	easily
pick	up	your	meaning.	The	script	simply	replaces	the	“number”	part	of	the	voice
command	with	an	empty	string	so	that	only	the	number	is	left	in	inp.	Sometimes
voice_to_text()	returns	the	number	in	word	form	such	as	one	or	two,	instead
of	in	numeric	form,	such	as	1	or	2.	We	therefore	also	change	all	the	word	forms
to	numerical	forms.	This	way,	you	can	say	“number	one”	or	“one”	to	the
microphone,	and	inp	will	always	be	in	the	form	you	want:	1.

If	your	choice	is	in	validinputs,	the	script	performs	the	sequence	of	actions
to	make	the	move:	place	a	dot	in	the	corresponding	cell,	add	the	cell	number	to
your	list	of	occupied	cells,	and	remove	the	occupied	cell	number	from	the	list	of

valid	inputs.

The	script	then	checks	if	you’ve	won	or	tied	the	game	2	and	responds	out
loud	appropriately.

Once	your	turn	is	over,	the	computer	randomly	selects	a	move	from
validinputs	to	play	against	you	3.	The	script	checks	whether	the	computer	has
won	or	tied	the	game.	If	your	voice	command	is	not	a	valid	move,	the	script
speaks	an	alert.

Here’s	one	interaction	with	the	game:

Player	blue,	what's	your	move?

You	said	7.

The	computer	occupies	cell	3.

Player	blue,	what's	your	move?

You	said	8.

The	computer	occupies	cell	1.

Player	blue,	what's	your	move?

You	said	9.

Congrats	player	blue,	you	won!

I’ve	managed	to	win	in	just	three	moves!

TRY	IT	OUT

Run	ttt_hs.py	and	try	to	beat	the	computer.

Summary
In	this	chapter,	you	learned	to	build	a	voice-controlled	graphical	tic-tac-toe	game
that	talks	in	a	human	voice.	Along	the	way,	you	learned	a	few	new	skills.

You	learned	how	mouse	clicks	work	in	the	turtle	module.	With	that
knowledge,	we	marked	cells	on	the	game	board	with	mouse	clicks.

You	learned	how	to	determine	whether	a	player	has	won	tic-tac-toe	based	on
the	explicit	game	rules.	This	is	at	the	heart	of	game	creation.	You	listed	all	cases
when	a	player	can	win	the	game,	then	added	code	to	check	all	cases	and	see
whether	there	is	a	winner.

You	also	added	the	speech	recognition	and	text-to-speech	features	to	a	game,
making	a	few	tweaks	to	make	sure	the	script	can	understand	your	input.	By
combining	these	skills,	you’ll	be	able	to	create	your	own	voice-controlled
games.

End-of-Chapter	Exercises
1.	 Modify	ttt_board.py	so	that	the	cell	number	appears	in	15-point	font	at	the

lower-left	corner	of	each	cell	(80	pixels	from	the	center	of	the	cell,	both
horizontally	and	vertically).

2.	 Modify	mouse_click.py	so	that	each	time	you	click	the	screen,	the	script
prints	out	the	additional	message	x	+	y	is,	followed	by	the	actual	value	of
the	x-	and	y-coordinates	of	the	clicked	point.

3.	 Modify	cell_number.py	so	that	each	time	you	click	the	screen,	the	script
prints	you	clicked	the	point	(x,	y)	before	printing	the	column,	row,	and
cell	numbers,	where	x	and	y	are	the	actual	coordinates.	For	example,	if	you
click	the	point	(x	=	–100,	y	=	50),	the	message	should	say	you	clicked	the
point	(-100,	50).

4.	 Modify	mark_cell.py	so	that	the	white	player	moves	first.

5.	 Modify	ttt_click.py	so	that	a	player	wins	only	by	marking	three	cells	in	a	row
horizontally	or	vertically,	but	not	diagonally.

11
CONNECT	FOUR

In	this	chapter,	you’ll	build	a	voice-
controlled	Connect	Four	game.	As	with	tic-
tac-toe	in	Chapter	10,	you’ll	first	draw	the

board	and	set	the	yellow	and	red	game	pieces	to	alternate
turns.	You’ll	animate	the	effect	of	a	disc	falling	from	the
top	of	a	column	to	the	lowest	available	row	to	make	the
game	more	visually	engaging.	You’ll	disallow	invalid
moves,	detect	if	a	player	has	won,	and	detect	if	all	42
cells	have	been	occupied	with	no	winner,	meaning	the
game	is	tied.
In	Chapter	10,	you	learned	how	to	check	whether	a	player	has	won	the	game

by	laying	out	all	winning	scenarios	and	checking	whether	the	current	game
board	matches	one	of	the	scenarios.	We’ll	apply	that	same	strategy	here.	You’ll
also	learn	how	to	use	exception	handling	to	prevent	crashing	during	the	process
of	checking	and	how	to	prevent	negative	indexing	errors.

Once	the	game	is	set	up,	we’ll	add	the	speech	recognition	and	text-to-speech
features	so	you	can	play	the	game	with	your	voice	alone.

To	start,	set	up	the	folder	/mpt/ch11/	for	this	chapter.	All	scripts	in	this	chapter
are	available	through	the	book’s	resources	page	at
https://www.nostarch.com/make-python-talk/.

NEW	SKILLS

https://www.nostarch.com/make-python-talk/

Creating	animations	using	turtle

Using	exception	handling	to	check	for	winning	cases

Handling	negative	indexing	in	Python

Mapping	a	list	of	lists	to	coordinates	in	a	two-dimensional	space

Game	Rules
Connect	Four	is	a	well-known	board	game,	but	I’ll	go	over	the	rules	to	clarify
the	logic	in	the	upcoming	code.	In	Connect	Four,	two	players	take	turns
dropping	discs	into	one	of	seven	columns,	from	the	top.	One	player	has	red	discs
and	the	other	yellow.	The	seven	columns	are	on	a	six-row,	vertically	suspended
grid.	When	a	disc	is	dropped	into	a	column,	it	will	fall	to	the	lowest	available
space	in	that	column.	Discs	cannot	move	from	one	column	to	another.

The	first	player	who	forms	a	direct	line—either	horizontally,	vertically,	or
diagonally—with	four	of	their	game	pieces	wins.	If	all	42	slots	have	been	filled
and	nobody	has	won,	the	game	is	tied.	We’ll	use	a	red	dot	and	a	yellow	dot	to
represent	the	discs.

Draw	the	Game	Board
We	first	draw	a	grid	with	six	rows	and	seven	columns.	We’ll	number	the
columns	at	the	top	of	the	screen	to	make	it	easier	to	play.

Open	your	Spyder	editor	and	enter	the	code	from	Listing	11-1.	Save	the	script
as	conn_board.py	in	your	chapter	folder.

import	turtle	as	t

#	Set	up	the	screen

1	t.setup(700,600,10,70)

t.hideturtle()

t.tracer(False)

t.bgcolor("lightgreen")

t.title("Connect	Four	in	Turtle	Graphics")

#	Draw	six	thick	vertical	lines

2	t.pensize(5)

for	i	in	range(-250,350,100):

				t.up()

				t.goto(i,-350)

				t.down()

				t.goto(i,350)

				t.up()

#	Draw	five	thin	gray	horizontal	lines	to	form	grid

3	t.pensize(1)

t.pencolor("grey")

for	i	in	range(-200,300,100):		

				t.up()

				t.goto(-350,i)

				t.down()

				t.goto(350,i)

				t.up()

#	Write	column	numbers	on	the	board

4	colnum	=	1

for	x	in	range(-300,350,100):

				t.goto(x,270)

				t.write(colnum,font	=	('Arial',20,'normal'))

				colnum	+=	1

t.done()

try:

				t.bye()

except	t.Terminator:

				print('exit	turtle')

Listing	11-1:	Drawing	the	Connect	Four	game	board

We	first	import	all	functions	in	the	turtle	module,	and	then	we	set	up	the
screen	as	700	by	600	pixels	1.	That	lets	us	make	each	cell	100	by	100	pixels	to
keep	things	simple.	We	set	the	background	color	to	light	green	and	the	title	to
Connect	Four	in	Turtle	Graphics.

We	then	draw	six	thick	vertical	lines	to	divide	the	screen	into	seven	columns.
At	2,	we	set	the	pen	width	to	5	pixels.	The	command	line	for	i	in
range(-250,350,100)	tells	the	variable	i	to	iterate	through	the	following	six
values:	–250,	–150,	–50,	50,	150,	and	250.	These	are	the	x-coordinates	of	the	six
vertical	lines.	The	y-coordinates	of	the	two	endpoints	of	the	six	vertical	lines	are
all	–350	and	350.	Similarly,	we	draw	five	thin,	gray	horizontal	lines	to	divide	the
screen	into	six	rows,	starting	at	3,	with	a	pen	size	of	1	pixel	and	color	of	gray	so
that	the	lines	appear	thin	and	light.	This	all	gives	us	an	even	grid	with	seven
columns	and	six	rows.

Next,	we	number	the	columns	to	let	players	know	where	to	place	the	discs.

We	first	create	a	variable	colnum	and	assign	a	value	1	to	it	4.	We	then	iterate
through	the	x-coordinates	of	the	center	of	the	seven	columns	and	write	the
corresponding	column	number	by	adding	one	to	the	value	of	colnum.

Run	the	script	and	you	should	see	a	screen	like	Figure	11-1.

Figure	11-1:	The	board	for	the	Connect	Four	game

The	Mouse-Click	Version
Now	you	have	a	game	board.	Let’s	drop	some	discs	into	the	columns.	In	this
section,	you’ll	learn	how	to	use	mouse	clicks	to	place	a	disc	in	a	column	and	let
it	fall	to	the	lowest	available	cell.	After	that,	you’ll	detect	invalid	moves,	wins,
and	ties.

Drop	a	Disc

Here,	you’ll	use	mouse	clicks	to	place	a	disc	in	a	column	of	your	choice.	The
column	number	in	which	the	disc	will	appear	is	determined	by	where	you	click.
The	row	number	depends	on	the	number	of	discs	already	in	that	column.

When	you	first	click	a	column,	a	red	dot	will	be	placed	in	the	lowest	available
cell.	The	colors	will	alternate	with	each	click.

Open	conn_board.py	and	add	the	code	in	Listing	11-2.	Then	save	the	new
script	as	show_disc.py	in	your	chapter	folder.

--snip--

#	Write	column	numbers	on	the	board

colnum	=	1

for	x	in	range(-300,	350,	100):

				t.goto(x,270)

				t.write(colnum,font	=	('Arial',20,'normal'))

				colnum	+=	1

#	The	red	player	moves	first

1	turn	=	"red"

#	The	x-coordinates	of	the	center	of	the	7	columns

2	xs	=	[-300,-200,-100,0,100,200,300]

#	The	y-coordinates	of	the	center	of	the	6	rows

ys	=	[-250,-150,-50,50,150,250]

#	Keep	track	of	the	occupied	cells

occupied	=	[list(),list(),list(),list(),list(),list(),list()]

#	Define	a	function	conn()	to	place	a	disc	in	a	cell

3	def	conn(x,y):

				#	Make	the	variable	turn	a	global	variable

				global	turn

				#	Calculate	the	column	number	based	on	x-	and	y-values

				if	-350<x<350	and	-300<y<300:

								col	=	int((x+450)//100)

				else:

								print('You	have	clicked	outside	the	game	board!')

				#	Calculate	the	lowest	available	row	number	in	that	column

				row	=	len(occupied[col-1])+1

				#	Go	to	the	cell	and	place	a	dot	of	the	player's	color

				t.up()

				t.goto(xs[col-1],ys[row-1])

				t.dot(80,turn)

				#	Add	the	move	to	the	occupied	list	to	keep	track

				occupied[col-1].append(turn)

				#	Give	the	turn	to	the	other	player

				if	turn	==	"red":

								turn	=	"yellow"

				else:

								turn	=	"red"

#	Bind	the	mouse	click	to	the	conn()	function

t.onscreenclick(conn)

t.listen()				

t.done()

--snip--

Listing	11-2:	Dropping	discs	on	the	game	board

The	red	player	goes	first,	so	after	the	game	board	is	drawn,	we	define	the
variable	turn	and	assign	the	value	red	to	it	1.	Starting	at	2,	we	define	three
lists.	The	list	xs	contains	values	corresponding	to	the	x-coordinates	of	the	middle
points	of	the	seven	columns.	The	list	ys	has	six	values	corresponding	to	the	y-
coordinates	of	the	middle	points	of	the	six	rows.	Later,	we’ll	use	these	lists	to
determine	the	x-	and	y-coordinates	of	the	center	of	all	42	cells.

The	list	occupied	is	a	list	of	lists.	It	starts	as	a	list	of	seven	empty	lists,	each
representing	a	column.	When	you	place	a	disc	in	a	column,	the	disc	will	be
added	to	the	corresponding	list.	This	way,	occupied	will	keep	track	of	all	discs
placed	and	their	positions.

At	3,	we	define	conn(),	which	places	the	disc	on	the	column	you	click.	We
declare	turn	as	a	global	variable,	so	that	its	value	can	be	recognized	both	inside
and	outside	conn().	Then,	we	convert	the	x-coordinate	of	the	user’s	click	to	the
column	number	on	the	game	board.	We	then	determine	the	lowest	row	available
in	that	column,	which	tells	us	which	row	to	place	the	disc	in.	Note	that
occupied[col-1]	is	the	list	of	all	discs	currently	in	the	column,	and	we	use	col-
1	instead	of	col	because	Python	uses	zero	indexing	but	our	columns	are
numbered	starting	at	1.

We	then	obtain	the	x-	and	y-coordinates	of	the	center	of	the	cell	in	which	to
place	the	new	disc.	The	turtle	module	places	a	dot	with	a	diameter	of	80	pixels
and	the	color	value	stored	in	turn.	We	add	the	disc	to	the	corresponding	list
within	occupied	so	that	next	time	a	disc	is	placed	in	the	same	column,	the
appropriate	cell	is	marked	as	invalid.	With	this,	the	player’s	turn	is	over,	and	we
hand	the	turn	to	the	other	player.	Finally,	we	bind	conn()	to	the	mouse-click
event.

Run	the	script,	and	you	should	be	able	to	click	on	the	game	board	and	mark
the	cell	with	a	red	or	yellow	dot.	Keep	clicking,	and	the	color	of	the	dot	will
alternate	between	red	and	yellow	(Figure	11-2).

Figure	11-2:	Place	discs	on	the	Connect	Four	game	board.

Animate	the	Falling	Discs
When	you	play	Connect	Four	in	the	real	world,	you	drop	the	disc	at	the	top,	and
it	falls	into	the	proper	position.	Next,	you’ll	create	the	animation	effect	of	the
disc	falling.	This	is	a	good	opportunity	to	learn	how	to	create	animation	effects
using	the	turtle	module.

Open	show_disc.py	and	add	the	code	in	Listing	11-3.	Save	this	as	disc_fall.py
in	your	chapter	folder.

import	turtle	as	t

1	from	time	import	sleep

--snip--

#	Keep	track	of	the	occupied	cells

occupied	=	[list(),list(),list(),list(),list(),list(),list()]	

#	Create	a	second	turtle	to	show	disc	falling

2	fall	=	t.Turtle()

fall.up()

3	fall.hideturtle()

#	Define	a	function	conn()	to	place	a	disc	in	a	cell

def	conn(x,y):

				#	Make	the	variable	turn	a	global	variable

				global	turn

				#	Calculate	the	column	number	based	on	x	and	y	values

				if	-350<x<350	and	-300<y<300:

								col	=	int((x+450)//100)

				else:

								print('You	have	clicked	outside	the	game	board!')

				#	Calculate	the	lowest	available	row	number	in	that	column

				row	=	len(occupied[col-1])+1

				#	Show	the	disc	fall	from	the	top

				4	if	row<6:

								for	i	in	range(6,row,-1):

												fall.goto(xs[col-1],ys[i-1])

												fall.dot(80,turn)

												update()

												sleep(0.05)

												fall.clear()

				#	Go	to	the	cell	and	place	a	dot	of	the	player's	color

				up()

--snip--

Listing	11-3:	Script	to	show	the	animation	effect	of	discs	falling

We	import	sleep()	so	we	can	pause	the	script	to	let	the	falling	disc	stay	in	a
cell	for	a	short	while,	allowing	the	user	to	see	its	movement	1.	Starting	at	2,
we	create	a	second	turtle	named	fall.	We	lift	the	drawing	pen	of	the	new	turtle
so	that	it	won’t	leave	a	line	as	it	moves.	We	also	use	hideturtle()	to	hide	the
cursor	3.

Starting	at	4,	we	animate	the	falling	disc.	We	first	see	if	the	column	is	full	by
checking	whether	the	row	number	is	less	than	6.	If	yes,	we’ll	show	the	animation
effect.	If	the	lower	rows	in	the	column	are	full,	the	disc	can	be	left	in	place
(there’s	no	need	to	show	the	disc	falling).

We	iterate	i	through	all	the	empty	cells	above	the	lowest	available	cell.	If	the
lowest	available	position	is	row	=	2,	for	example,	the	command	for	i	in
range(6,row,-1)	iterates	i	through	values	6,	5,	4,	and	3.	The	-1	tells	the	range
function	to	count	backward.	At	each	iteration,	the	fall	turtle	places	a	dot	in	the

center	of	the	empty	cell.	The	script	draws	a	dot	to	the	screen,	pauses	for	0.05
seconds,	and	then	erases	the	dot	before	going	to	the	next	iteration.

The	script	is	now	a	complete	game!	However,	at	the	moment,	players	must
use	their	own	judgment	to	enforce	the	following	rules:

If	a	column	is	already	full,	you	cannot	drop	a	disc	in	it.

If	a	player	connects	four	cells	in	a	straight	line,	that	player	wins,	and	the
game	should	stop.

If	all	42	cells	are	occupied	and	nobody	has	won,	the	game	should	stop	and	a
tie	be	declared.

Let’s	code	that	into	the	game.

TRY	IT	OUT

Run	disc_fall.py,	click	a	few	times,	and	then	start	it	again.	Find	someone	to	play	with	you,
being	mindful	of	the	three	rules	just	mentioned.

Determine	Valid	Moves,	Wins,	and	Ties
Next,	we’ll	improve	the	game	by	blocking	invalid	moves	and	declaring	wins	or
ties.	Open	disc_fall.py	and	add	the	code	in	Listing	11-4.	Save	the	new	script	as
conn_click.py.	The	code	changes	are	shown	in	two	sections,	so	it’s	easier	to	refer
back	to	the	code	when	reading	the	explanations.

import	turtle	as	t

from	time	import	sleep

from	tkinter	import	messagebox

#	Set	up	the	screen

--snip--

#	Create	a	second	turtle	to	show	disc	falling

fall	=	t.Turtle()

fall.up()

fall.hideturtle()

#	Create	a	list	of	valid	moves

1	validinputs	=	[1,2,3,4,5,6,7]

#	Define	a	horizontal4()	function	to	check	connecting	4	

horizontally

2	def	horizontal4(x,	y,	turn):

				win	=	False

				for	dif	in	(-3,	-2,	-1,	0):

								try:

												if	occupied[x+dif][y]	==	turn\

												and	occupied[x+dif+1][y]	==	turn\

												and	occupied[x+dif+2][y]	==	turn\

												and	occupied[x+dif+3][y]	==	turn\

												and		x+dif	>=	0:

																win	=	True	

								except	IndexError:

												pass

				return	win					

#	Define	a	vertical4()	function	to	check	connecting	4	vertically

3	def	vertical4(x,	y,	turn):

				win	=	False

				try:

								if	occupied[x][y]	==	turn\

								and	occupied[x][y-1]	==	turn\

								and	occupied[x][y-2]	==	turn\

								and	occupied[x][y-3]	==	turn\

								and	y-3	>=	0:

										win	=	True

				except	IndexError:

								pass

				return	win						

#	Define	a	forward4()	function	to	check	connecting	4	diagonally	

in	/	shape

def	forward4(x,	y,	turn):

				win	=	False

				for	dif	in	(-3,	-2,	-1,	0):

								try:

												if	occupied[x+dif][y+dif]	==	turn\

												and	occupied[x+dif+1][y+dif+1]	==	turn\

												and	occupied[x+dif+2][y+dif+2]	==	turn\

												and	occupied[x+dif+3][y+dif+3]	==	turn\

												and	x+dif	>=	0	and	y+dif	>=	0:

														win	=	True

								except	IndexError:

												pass

				return	win					

#	Define	a	back4()	function	to	check	connecting	4	diagonally	in	\	

shape

def	back4(x,	y,	turn):

				win	=	False

				for	dif	in	(-3,	-2,	-1,	0):

								try:

												if	occupied[x+dif][y-dif]	==	turn\

												and	occupied[x+dif+1][y-dif-1]	==	turn\

												and	occupied[x+dif+2][y-dif-2]	==	turn\

												and	occupied[x+dif+3][y-dif-3]	==	turn\

												and	x+dif	>=	0	and	y-dif-3	>=	0:

														win	=	True

								except	IndexError:

												pass

				return	win	

#	Define	a	win_game()	function	to	check	if	someone	wins	the	game

4	def	win_game(col,	row,	turn):

				win	=	False

				#	Convert	column	and	row	numbers	to	indexes	in	the	list	of	

lists	occupied

				x	=	col-1

				y	=	row-1

				#	Check	all	winning	possibilities

				if	vertical4(x,	y,	turn)	==	True:

								win	=	True

				if	horizontal4(x,	y,	turn)	==	True:

								win	=	True

				if	forward4(x,	y,	turn)	==	True:

								win	=	True

				if	back4(x,	y,	turn)	==	True:

								win	=	True

				#	Return	the	value	stored	in	win

				return	win

--snip--

Listing	11-4:	First	half	of	the	script	to	disallow	invalid	moves	and	declare
wins	and	ties

We	import	the	messagebox	module	from	the	tkinter	package	to	allow	us	to
display	messages	about	wins,	ties,	and	invalid	moves.

At	1,	we	create	the	list	validinputs	to	keep	track	of	valid	moves.	All	seven
columns	are	valid	to	start	with.	If	a	column	contains	six	discs,	it	will	be	removed
from	the	list.

A	player	can	win	the	game	by	collecting	four	discs	in	a	row	in	one	of	four
orientations:	horizontally,	vertically,	diagonally	in	a	forward-slash	fashion	(/),	or
diagonally	in	a	backslash	fashion	(\).	Therefore,	we	define	four	functions	to
check	for	each	way	of	winning.

At	2,	we	define	horizontal4(),	which	checks	if	a	player	has	won	the	game
by	successfully	connecting	four	discs	in	a	row	horizontally.	In	the	function,	we
create	the	variable	win	and	assign	a	default	value	of	False.	The	function	then
checks	whether	the	player	has	connected	four	discs	horizontally.	If	yes,	the	value
of	win	changes	to	True.	When	the	function	horizontal4()	is	called,	it	returns
the	value	stored	in	the	variable	win.	Let’s	look	at	the	details	of	this	function.

We’ll	use	x	=	col-1	and	y	=	row-1	to	convert	column	and	row	numbers	on
the	game	board	to	indexes	in	the	occupied	list.	The	cell	with	column	number
col	and	row	number	row	corresponds	to	occupied[x][y]	in	occupied.	For
simplicity,	we’ll	call	this	cell	[x][y]	for	the	rest	of	the	chapter.

A	player	can	connect	four	pieces	horizontally	in	four	ways:

Cells	[x-3][y],	[x-2][y],	and	[x-1][y]	all	have	the	same	color	as	cell	[x]
[y].

Cells	[x-2][y],	[x-1][y],	and	[x+1][y]	all	have	the	same	color	as	cell	[x]
[y].

Cells	[x-1][y],	[x+1][y],	and	[x+2][y]	all	have	the	same	color	as	cell	[x]
[y].

Cells	[x+1][y],	[x+2][y],	and	[x+3][y]	all	have	the	same	color	as	cell	[x]
[y].

We	therefore	define	a	variable	dif	to	iterate	through	four	values	(-3,	-2,
-1,	0).	For	each	value	of	dif,	we	check	whether	all	four	cells—[x+dif][y],
[x+dif+1][y],	[x+dif+2][y],	and	[x+dif+3][y]—have	the	same	color.	If	yes,
we	change	the	value	of	win	to	True.

In	the	process,	we	need	to	make	exceptions	for	IndexError	because,	for
example,	the	value	of	x+3	may	be	8,	but	the	board	has	only	seven	columns.	If	we
do	not	make	exceptions	for	IndexError,	the	script	will	crash	in	the	process	of
checking	whether	the	player	has	won	the	game.

Further,	we	ensure	that	none	of	the	indexes	have	negative	values,	because
negative	indexing	has	a	very	specific	meaning	in	Python.	In	Python,	a	negative
index	wraps	around	to	the	beginning	of	the	list	instead	of	falling	off	at	the	end.
For	example,	index	-1	refers	to	the	last	element	in	a	list	in	Python,	-2	to	the
second	to	last,	and	so	on.	Negative	indexing	will	not	raise	an	IndexOutOfBounds
error,	but	it	will	also	not	behave	as	you	expect.

Let’s	look	at	a	concrete	example:	for	x	=	1	and	y	=	2,	when	the	script	checks
the	cell	[x-3][2],	it	will	look	at	cell	[-2][2],	which	is	actually	cell	[5][2]
because	-2	refers	to	the	second-to-last	value	in	x,	which	is	5	(that	is,	the	sixth
column,	since	there	is	a	total	of	seven	columns).	Therefore,	we	put	the	condition
x+dif>	=	0	in	the	function	to	ensure	that	we	have	no	negative	indexing
anywhere.

Finally,	we	use	try	and	except	in	every	one	of	the	four	cases	of	winning	by
connecting	four	discs	horizontally.	If	instead	we	had	used	just	one	set	of	try	and
except	for	all	four	cases	of	wins,	whenever	any	IndexError	occured,	the	script
would	skip	all	remaining	cases	and	go	to	the	except	branch	directly.	This	would
cause	the	script	to	fail	to	identify	many	cases	of	wins.

Similarly,	we	define	vertical4()	to	check	for	a	win	by	connecting	four	discs
in	a	row	vertically	3.	Then	forward4()	checks	for	a	forward	diagonal	win,	and
back4()	checks	for	a	backward	diagonal	win.

At	4,	we	define	win_game(),	which	checks	for	a	win	in	any	of	the	13	win
scenarios	(four	horizontally,	one	vertically,	four	diagonally	in	a	forward-slash
fashion,	and	four	diagonally	in	a	backslash	fashion).	In	win_game(),	we	create
the	variable	win	and	assign	a	default	value	of	False.	The	function	first	converts
column	and	row	numbers,	col	and	row,	to	indexes	in	the	occupied	list,	x	and	y.
The	function	then	calls	the	four	functions	just	defined	to	see	if	the	player	may
have	won.	If	any	of	the	four	functions	returns	a	value	of	True,	the	value	of	win
changes	to	True,	and	win_game()	will	return	a	value	of	True	when	it’s	called.

Now	let’s	examine	the	second	half	of	the	script	(which	we	are	saving	as
conn_click.py),	shown	in	Listing	11-5.

--snip--

#	Count	the	number	of	rounds

1	rounds=1

#	Define	a	function	conn()	to	place	a	disc	in	a	cell

def	conn(x,y):

				#	Declare	global	variables

		2	global	turn,	rounds,	validinputs

				#	Calculate	the	column	number	based	on	x	and	y	values

				if	-350<x<350	and	-300<y<300:

								col	=	int((x+450)//100)

				else:

								print('You	have	clicked	outside	the	game	board!')

				#	Check	if	it's	a	valid	move

				if	col	in	validinputs:

								#	Calculate	the	lowest	available	row	number	in	that	

column

								row	=	len(occupied[col-1])+1

--snip--

								#	Go	to	the	cell	and	place	a	dot	of	the	player's	color

								t.up()

								t.goto(xs[col-1],ys[row-1])

								t.dot(80,turn)

								t.update()

								#	Add	the	move	to	the	occupied	list	to	keep	track

								occupied[col-1].append(turn)

#	Check	if	the	player	has	won

						3	if	win_game(col,	row,	turn)	==	True:

												#	If	a	player	wins,	invalid	all	moves,	end	the	game

												validinputs	=	[]

												messagebox.showinfo\

											("End	Game",f"Congrats	player	{turn},	you	won!")

								#	If	all	cells	are	occupied	and	no	winner,	it's	a	tie

								elif	rounds	==	42:

												messagebox.showinfo("Tie	Game","Game	over,	it's	a	

tie!")

								#	Counting	rounds

								rounds	+=	1

								

								#	Update	the	list	of	valid	moves

						4	if	len(occupied[col-1])	==	6:

												validinputs.remove(col)

								#	Give	the	turn	to	the	other	player

								if	turn	==	"red":

												turn	=	"yellow"

								else:

												turn	=	"red"					

				#	If	col	is	not	a	valid	move,	show	error	message

		5	else:

								messagebox.showerror("Error","Sorry,	that's	an	invalid	

move!")

#	Bind	the	mouse	click	to	the	conn()	function

t.onscreenclick(conn)

t.listen()

--snip--

Listing	11-5:	Second	half	of	the	script	to	disallow	invalid	moves	and	declare
wins	and	ties

At	1,	we	create	the	variable	rounds	to	keep	track	of	the	number	of	rounds
played,	corresponding	to	the	number	of	discs	on	the	game	board,	so	that	we	can
declare	a	tie	when	the	number	reaches	42.

We	change	conn()	2	to	declare	three	global	variables	so	that	their	values	can
be	recognized	both	inside	and	outside	the	function.	At	3,	we	call	win_game()	to
see	whether	anyone	has	won.	If	yes,	we	change	validinputs	to	an	empty	list	so
no	further	moves	can	be	made.	A	message	box	will	pop	up	that	says	Congrats
player	red,	you	won!	or	Congrats	player	yellow,	you	won!

Figure	11-3	shows	the	red	player	winning	a	game.

Figure	11-3:	Red	wins!	The	darker	discs	are	red,	and	the	lighter	are	yellow.

If	no	one	has	won	but	rounds	reaches	42,	the	script	declares	a	tie	game
(Figure	11-4).

Figure	11-4:	A	tied	game

If	no	player	has	won	or	the	game	is	not	tied,	we	increase	the	value	of	rounds
by	one	and	assign	the	turn	to	the	other	player.	We	also	update	the	list	of	valid
moves.	If	the	number	of	discs	in	the	current	column	reaches	six,	we	remove	the
column	number	from	the	list	validinputs	4.

During	the	game,	if	a	player	clicks	an	invalid	cell	5,	a	message	box	will	say
Sorry,	that's	an	invalid	move!	(Figure	11-5).

Figure	11-5:	An	invalid	move

TRY	IT	OUT

Run	conn_click.py	and	play	a	few	games	against	yourself.	Try	to	generate	the	following	three
instances:	you	make	an	invalid	move,	player	yellow	wins	the	game,	and	the	game	is	tied.

The	Voice-Controlled	Version
Now	we’re	ready	to	add	the	voice	control	functionality!

First,	we’ll	set	the	computer	as	your	opponent	in	the	game.	After	you	make	a
move	as	the	red	player,	the	computer	will	randomly	select	a	yellow	move	until
the	game	ends.	Once	you	understand	how	playing	against	a	computer	works,	a
voice-controlled	game	in	which	you	play	against	another	person	is	really	simple.
I’ll	leave	that	as	an	end-of-chapter	exercise,	and	the	script	is	provided	at	the

book’s	resources	website.

NOTE

We	discuss	only	the	one-player	version	in	which	you	always	move	first	to
save	space	and	to	focus	on	creating	a	voice-controlled	Connect	Four.	In
our	ultimate	VPA	in	Chapter	17,	you’ll	see	a	generalized	version	of	the
game	in	which	you	can	choose	to	play	against	a	computer	or	a	human
and	whether	you	move	first	or	second.

Download	conn_hs.py	from	the	book’s	resources	and	save	it	in	your	chapter
folder.	Listing	11-6	highlights	the	differences	between	conn_hs.py	and
conn_click.py.

import	turtle	as	t

from	time	import	sleep

from	tkinter	import	messagebox

from	random	import	choice

#	Import	functions	from	the	local	package

from	mptpkg	import	voice_to_text,	print_say

#	Set	up	the	screen

--snip--

#	Create	a	list	of	valid	moves

validinputs	=	['1','2','3','4','5','6','7']

--snip--

#	Add	a	dictionary	of	words	to	replace

to_replace	=	{'number	':'',	'cell	':'',

														'one':'1',	'two':'2',	'three':'3',

														'four':'4',	'for':'4',	'five':'5',

														'six':'6',	'seven':'7'}

#	Start	an	infinite	loop	to	take	voice	inputs

1	while	True:

				#	Ask	for	your	move

				print_say(f"Player	{turn},	what's	your	move?")

				#	Capture	your	voice	input

				inp	=	voice_to_text().lower()

				print_say(f"You	said	{inp}.")

				for	x	in	list(to_replace.keys()):			

								inp	=	inp.replace(x,	to_replace[x])

				#	If	it	is	not	a	valid	move,	try	again

				if	inp	not	in	validinputs:

								print_say("Sorry,	that's	an	invalid	move!")				

				#	If	your	voice	input	is	a	valid	move,	play	the	move

		2	else:

								col	=	int(inp)

								#	Calculate	the	lowest	available	row	number	in	that	

column

								row	=	len(occupied[col-1])+1

								#	Show	the	disc	fall	from	the	top

								if	row<6:

												for	i	in	range(6,row,-1):

																fall.goto(xs[col-1],ys[i-1])

																fall.dot(80,turn)

																t.update()

																sleep(0.05)

																fall.clear()

								#	Go	to	the	cell	and	place	a	dot	of	the	player's	color

								t.up()

								t.goto(xs[col-1],ys[row-1])

								t.dot(80,turn)

								t.update()

								#	Add	the	move	to	the	occupied	list	to	keep	track

								occupied[col-1].append(turn)

								#	Check	if	the	player	has	won

								if	win_game(col,	row,	turn)	==	True:

												#	If	a	player	wins,	invalid	all	moves,	end	the	game

												validinputs	=	[]

										3	print_say(f"Congrats	player	{turn},	you	won!")

												messagebox.showinfo/

												("End	Game",f"Congrats	player	{turn},	you	won!")

												break

								#	If	all	cells	are	occupied	and	no	winner,	it's	a	tie

								elif	rounds	==	42:

												print_say("Game	over,	it's	a	tie!")

												messagebox.showinfo("Tie	Game","Game	over,	it's	a	

tie!")

												break

								#	Counting	rounds

								rounds	+=	1

								#	Update	the	list	of	valid	moves

								if	len(occupied[col-1])	==	6:

												validinputs.remove(str(col))	

								#	Give	the	turn	to	the	other	player

								if	turn	==	"red":

												turn	=	"yellow"

								else:

												turn	=	"red"	

								#	The	computer	randomly	selects	a	move

						4	if	len(validinputs)>0:

												col	=	int(choice(validinputs))

								print_say(f'The	computer	chooses	column	{col}.')

								#	Calculate	the	lowest	available	row	number	in	that	

column

								row	=	len(occupied[col-1])+1

								#	Show	the	disc	fall	from	the	top

								if	row	<	6:

												for	i	in	range(6,row,-1):

																fall.goto(xs[col-1],ys[i-1])

																fall.dot(80,turn)

																update()

																sleep(0.05)

																fall.clear()

								#	Go	to	the	cell	and	place	a	dot	of	the	player's	color

								t.up()

								t.goto(xs[col-1],ys[row-1])

								t.dot(80,turn)

								t.update()

								#	Add	the	move	to	the	occupied	list	to	keep	track

								occupied[col-1].append(turn)

								#	Check	if	the	player	has	won

								if	win_game(col,	row,	turn)	==	True:

												#	If	a	player	wins,	invalid	all	moves,	end	the	game

												validinputs	=	[]

										5	print_say(f"Congrats	player	{turn},	you	won!")

												messagebox.showinfo\

												("End	Game",f"Congrats	player	{turn},	you	won!")

												break

								#	If	all	cells	are	occupied	and	no	winner,	it's	a	tie

								elif	rounds	==	42:

												print_say("Game	over,	it's	a	tie!")

												messagebox.showinfo("Tie	Game","Game	over,	it's	a	

tie!")

												break

								#	Counting	rounds

								rounds	+=	1

								#	Update	the	list	of	valid	moves

								if	len(occupied[col-1])==6:

												validinputs.remove(str(col))

								#	Give	the	turn	to	the	other	player

								if	turn	==	"red":

												turn	=	"yellow"

								else:

												turn	=	"red"	

t.done()

--snip--

Listing	11-6:	Script	highlights	for	the	voice-controlled	Connect	Four	game

We	import	a	few	extra	modules.	The	choice()	function	from	the	random
module	lets	the	computer	randomly	select	a	move	to	play	against	you.	We	also
import	our	local	print_say()	and	voice_to_text()	functions	from	the	local
package	mptpkg	to	handle	the	voice-control	functionality.

This	time,	we’ll	use	string	values	instead	of	integers	to	represent	the	seven
column	numbers	in	the	list	validinputs,	because	voice	inputs	are	naturally
string	variables	and,	in	many	cases,	attempting	to	convert	voice	inputs	to
integers	will	crash	the	script.

At	1,	we	start	an	infinite	while	loop.	At	each	iteration,	the	script	asks	for
your	move	out	loud.	You	speak	into	the	microphone	to	make	your	move,	and	the
script	captures	your	voice	command	and	stores	it	in	inp.

Here	we	did	a	little	tweaking	to	make	voice_to_text()	more	responsive	to
your	voice	commands,	as	we	did	in	Chapter	10	(see	Listing	10-6	as	a	reminder).
Further,	the	script	always	interprets	number	four	as	number	for,	so	we	replace
for	with	4	to	get	a	better	response	from	the	script.

If	your	voice	command	is	not	in	validinputs,	the	script	reminds	you	out
loud:	“Sorry,	that’s	an	invalid	move!”	I’ve	moved	up	the	invalid	voice	input	so
that	the	if	and	else	branches	are	close	together	in	the	script,	making	it	easy	for
you	to	understand	the	logic.	If	the	two	branches	are	far	apart,	it’s	easy	to	get	lost
in	the	long	lines	of	code.

If	your	voice	command	is	a	valid	move	2,	the	script	will	place	the	disc	as
directed,	let	the	disc	fall	to	the	lowest	available	space	in	the	column,	add	the	cell
number	to	your	list	of	occupied	cells,	remove	the	cell	number	from	the	list	of
valid	inputs,	and	so	on.

The	script	then	checks	whether	you	won	the	game	and,	if	you	have,
congratulates	you	out	loud	3.	If	not,	it	will	check	for	a	tie	and	announce
accordingly.

When	your	turn	is	over,	and	if	you	haven’t	won	or	tied	the	game,	the	computer
randomly	selects	a	move	from	validinputs	to	play	against	you	4,	make	the

move,	and	check	whether	the	computer	has	won	the	game	5.	It	will	also	check
for	a	tie.

WARNING

You	need	a	decent	internet	connection	for	the	script	to	work	properly.
Further,	avoid	saying	a	single	number	as	the	voice	input.	Instead,	start
with	“number”	so	that	the	script	can	put	your	voice	command	in
context.

Here’s	the	printed	message	from	one	interaction	with	the	game:

Player	red,	what's	your	move?

You	said	number	four.

The	computer	chooses	column	2.

Player	red,	what's	your	move?

You	said	number	four.

The	computer	chooses	column	2.

Player	red,	what's	your	move?

You	said	number	four.

The	computer	chooses	column	2.

Player	red,	what's	your	move?

You	said	number	four.

Congrats	player	red,	you	won!	

Figure	11-6	shows	my	winning	game.

Figure	11-6:	Red	winning	the	voice-controlled	version

TRY	IT	OUT

Run	conn_hs.py	and	play	a	complete	game	with	the	computer.	See	if	you	can	make	the
script	understand	your	every	voice	command	on	the	first	try.

Summary
In	this	chapter,	you	created	a	voice-controlled	graphical	Connect	Four	game	that
talks	back	to	you	in	a	human	voice.	You	set	up	the	game	board	and	mechanisms
as	you	did	in	Chapter	10,	but	this	time	animated	the	moves.

You	learned	how	to	let	Python	determine	whether	a	player	has	won	the	game.
In	the	process,	you	learned	to	lay	out	all	cases	of	winning	and	use	the	script	to
check	each	one.	You	also	learned	how	to	properly	use	exception	handling	and
prevent	negative	indexing	from	causing	mistakes	in	your	script.

You	added	the	voice	recognition	and	text-to-speech	features,	but	also	did	a	bit
of	refactoring	to	make	sure	your	code	stayed	user	readable	as	you	added	to	it.	In
the	next	couple	of	chapters,	you’ll	create	more	voice-controlled	graphical	games
and	make	them	intelligent.

End-of-Chapter	Exercises
1.	 Modify	conn_board.py	so	that	six	row	numbers	appear	at	the	right	of	the

screen,	with	the	top	row	being	6	and	the	bottom	row	being	1.	Make	the	x-
coordinates	of	the	row	numbers	325.

2.	 Modify	disc_fall.py	so	that	the	discs	fall	at	twice	the	speed.

3.	 Modify	conn_click.py	so	that	a	player	wins	only	by	connecting	four	discs	of
the	same	color	horizontally	or	diagonally,	and	not	vertically.

4.	 Currently,	when	you	play	Connect	Four	using	the	final	conn_hs.py,	you	can
say	either	“number	four”	or	“four”	if	you	want	to	place	a	disc	in	column	4.
Modify	the	script	so	that	you	can	also	say	“column	four”	to	place	a	disc	in
that	column.

5.	 Modify	conn_hs.py	so	that	you	play	against	a	person	instead	of	the	computer.

12
GUESS-THE-WORD	GAME

In	this	chapter,	you’ll	build	a	voice-
controlled	graphical	guess-the-word	game.
This	is	an	interesting	challenge	because

when	playing	guess-the-word,	players	often	talk	quickly,
so	we’ll	need	to	fine-tune	our	script’s	listening	abilities.
As	usual,	we’ll	go	over	the	game	rules	and	draw	a	game	board;	this	game

board	uses	six	coins	to	represent	your	six	guesses.	You’ll	learn	how	to	load	a
picture	to	a	Python	script	and	create	multiple	images	of	it	onscreen.	You’ll	also
learn	to	make	the	images	disappear	one	by	one.

We’ll	start	the	game	by	using	written	inputs.	Then,	when	we	have	it	working
well,	we’ll	add	the	speech	recognition	and	text-to-speech	features.

All	scripts	in	this	chapter	are	available	on	the	book’s	resources	page	at
https://www.nostarch.com/make-python-talk/.	Start	by	creating	the	folder
/mpt/ch12/	for	this	chapter.

NEW	SKILLS

Loading	a	picture	file	into	a	script	and	manipulating	it

Creating	multiple	images	from	the	same	file

Drawing	messages	and	shapes	on	a	turtle	screen

Coding	a	new	set	of	rules

https://www.nostarch.com/make-python-talk/

Game	Rules
Our	guess-the-word	game	is	loosely	based	on	the	hangman	game.	Our	game	will
present	only	four-letter	words	to	keep	it	simple,	but	you	should	try	adapting	it
later	when	you’re	comfortable	with	how	it	all	works.	Let’s	go	over	the	rules	of
the	game	first.

Similar	to	hangman,	our	guess-the-word	game	involves	two	players.	The	first
player	thinks	of	a	word	and	draws	a	number	of	dashes	equal	to	the	number	of
letters	in	the	word.	The	first	player	also	draws	six	coins	in	the	middle	of	the
screen	to	represent	the	six	incorrect	guesses	the	second	player	will	be	allowed.

The	second	player	tries	to	figure	out	the	word	by	guessing	one	letter	at	a	time.
If	the	suggested	letter	is	in	the	word,	the	first	player	fills	in	the	blanks	with	the
letter	in	the	right	places.	If	a	suggested	letter	is	not	in	the	word,	the	first	player
erases	a	coin	in	the	middle	of	the	screen.	If	the	second	player	completes	the	word
before	making	six	incorrect	guesses,	they	win	the	game.	If	that	player	fails	to
identify	the	word	before	using	up	their	six	wrong	guesses,	they	lose.

Draw	the	Game	Board
Our	game	board	will	preload	with	four	dashes	to	represent	the	word.	We’ll	also
include	the	message	incorrect	guesses	onscreen.	Open	your	Spyder	editor	and
enter	the	code	in	Listing	12-1,	saving	it	as	guess_word_board.py.

import	turtle	as	t

#	Set	up	the	board

t.setup(600,500)

t.hideturtle()

t.tracer(False)

t.bgcolor("lavender")

t.title("Guess	the	Word	Game	in	Turtle	Graphics")

#	Define	a	variable	to	count	how	many	guesses	left

1	score	=	6

#	Create	a	second	turtle	to	show	guesses	left

left	=	t.Turtle()

left.up()

left.hideturtle()

left.goto(-290,200)

left.write(f"guesses	left:			{score}",font=('Arial',20,'normal'))

#	Put	incorrect	guesses	on	top

t.up()

t.goto(-290,150)

t.write("incorrect	guesses:",font=('Arial',20,'normal'))

#	Put	four	empty	spaces	for	the	four	letters	at	bottom

2	for	x	in	range(4):

				t.goto(-275+150*x,-200)

				t.down()

				t.goto(-175+150*x,-200)

				t.up()

t.done()

try:

				t.bye()

except	t.Terminator:

				print('exit	turtle')

Listing	12-1:	Python	script	to	draw	the	guess-the-word	game	board

We	import	the	turtle	module	and	set	up	the	screen	to	be	600	by	500	pixels
with	a	lavender	background.	The	title	will	read	Guess	the	Word	Game	in
Turtle	Graphics.	Note	that	we	omitted	the	last	two	arguments	in	setup(),	so
the	game	board	will	appear	at	the	center	of	your	computer	screen	by	default.

At	1,	we	create	a	variable	score	to	keep	track	of	the	number	of	guesses	the
player	has	left.	It	starts	with	a	value	of	6.	Later	in	the	game,	every	time	the
player	guesses	an	incorrect	letter,	the	value	will	decrease	by	1.	We	also	create	a
new	turtle	named	left,	representing	the	number	of	guesses	remaining.	We	use
the	new	turtle	to	write	the	number	of	chances	the	player	has	left,	erasing
whatever	was	there	before.	By	using	a	new	turtle,	we	limit	the	number	of	objects
we	need	to	redraw	onscreen.

We	then	add	the	text	incorrect	guesses,	which	will	later	show	the	incorrect
letters	the	player	guessed.	We	draw	four	dashes	at	the	bottom	of	the	board	3	to
hold	the	four	letters	in	the	word.	Run	the	script	and	you	should	see	a	board
similar	to	Figure	12-1.

Figure	12-1:	The	board	for	the	guess-the-word	game

The	Text	Version
In	this	section,	you’ll	place	the	six	coins	on	the	screen	and	enable	the	player	to
enter	letters	with	the	keyboard.	You’ll	then	determine	whether	a	player	has	won
or	lost	the	game.	This	completes	the	silent	version	of	guess-the-word.

Load	the	Coins
You’ll	place	six	coins	at	the	center	of	the	screen.	In	the	process,	you’ll	learn	how
to	load	a	picture	to	the	script,	resize	it	to	any	shape	you	like,	and	place	as	many
objects	on	the	turtle	screen	as	you	like.	As	noted,	each	coin	corresponds	to	one
incorrect	guess.

Download	the	picture	file	cash.png	from	the	book’s	resources	and	place	it	in
your	chapter	folder.	Open	guess_word_board.py,	add	the	highlighted	code	in
Listing	12-2,	and	save	the	new	script	as	show_coins.py	in	the	same	chapter
folder	containing	cash.png.

--snip--

from	tkinter	import	PhotoImage

from	time	import	sleep

--snip--

#	Put	four	empty	spaces	for	the	four	letters	at	bottom

for	x	in	range(4):

				t.goto(-275+150*x,-200)

				t.down()

				t.goto(-175+150*x,-200)			

				t.up()

#	Load	a	picture	of	the	coin	to	the	script

1	coin	=	PhotoImage(file="cash.png").subsample(10,10)

t.addshape("coin",	t.Shape("image",	coin))

#	Create	six	coins	on	screen	

2	coins	=	[0]*6

for	i	in	range(6):

				coins[i]	=	t.Turtle('coin')

				coins[i].up()

				coins[i].goto(-100+50*i,0)

t.update()

3	sleep(3)

#	Make	the	coins	disappear	one	at	a	time

for	i	in	range(6):

				coins[-(i+1)].hideturtle()

				t.update()

				sleep(1)

t.done()

--snip--

Listing	12-2:	Script	to	show	and	remove	coins

We	import	the	PhotoImage()	class	from	the	tkinter	module	and	the	sleep()
function	from	the	time	module.	We	then	load	cash.png	by	using	PhotoImage()
1.	We	use	subsample()	to	scale	the	image	to	the	size	we	want.	In	this	case,	we
use	scale	factors	of	(10,10),	which	means	that	both	the	width	and	the	height	of
the	picture	are	one-tenth	that	of	the	original	picture.

NOTE

To	scale	up	the	size	of	the	image	onscreen,	you	can	use	the	zoom()
method	in	the	PhotoImage()	class	from	tkinter.	For	example,	zoom(2,3)
will	double	the	width	and	triple	the	height	of	the	original	picture.

At	2,	we	create	a	list	coins	with	six	elements	by	using	[0]*6.	If	you	print
out	the	list,	it	will	look	like	this:

[0,	0,	0,	0,	0,	0]

We’ll	change	the	elements	later;	the	0	values	are	just	placeholders.

Next,	we	create	a	new	turtle	in	each	element	in	coins.	We	then	make	the	coin
turtles	go	to	the	center	of	the	screen	and	line	up	horizontally.	To	demonstrate
how	to	load	and	then	hide	the	coins,	we	have	them	stay	onscreen	for	three
seconds	3	before	using	hideturtle()	from	the	turtle	module	to	make	them
disappear	from	the	screen	one	at	a	time,	starting	with	the	last	one.

Figure	12-2	shows	the	screen	in	the	first	three	seconds,	as	the	coins	are	lined
up.

Figure	12-2:	Showing	coins	on	the	guess-the-word	game	board

TRY	IT	OUT

Run	show_coins.py	and	see	the	output	screen.	Once	you	confirm	it’s	working,	change
tracer(False)	to	tracer(True)	in	the	script	and	rerun	it.	You	should	be	able	to	see	the	six
coins	placed	onscreen	one	by	one.	After	that,	change	tracer(True)	back	to	tracer(False)

before	continuing	to	the	next	subsection.

Guess	the	Letters
The	next	version	of	the	game	will	use	15	four-letter	words,	picked	from	a	list	of
the	most	commonly	used	four-letter	words	according	to	Professor	Barry
Keating’s	website	at	the	University	of	Notre	Dame	(https://bit.ly/3g7z7cg).
Keating	has	done	extensive	work	in	the	fields	of	business	forecasting	and	data
mining.	He	is	also	the	coauthor	of	the	popular	textbook	Forecasting	and
Predictive	Analytics	(McGraw	Hill,	2018).

After	we	make	the	following	modifications,	the	script	will	randomly	choose
one	word,	ask	you	to	guess	a	letter,	and	then	accept	input	from	the	IPython
console.	If	a	guess	is	right,	the	letter	will	show	up	on	one	of	the	dashes
corresponding	to	the	position	of	the	letter	in	the	word.	In	the	rare	case	that	the
letter	appears	in	the	word	twice,	the	letter	will	show	up	on	two	of	the	dashes.	If
the	letter	is	not	in	the	word,	it	will	show	up	at	the	top	of	the	screen	in	the	list	of
incorrect	guesses.	We’ll	skip	placing	the	coins	in	this	script	to	make	testing	of
the	code	easier	to	follow.

Open	guess_word_board.py,	add	the	highlighted	code	in	Listing	12-3,	and
save	the	new	script	as	guess_letter.py.

import	turtle	as	t

from	random	import	choice

--snip--

#	Put	four	empty	spaces	for	the	four	letters	at	bottom

for	x	in	range(4):

				t.goto(-275+150*x,-200)

				t.down()

				t.goto(-175+150*x,-200)

				t.up()

t.update()

#	Put	words	in	a	dictionary	and	randomly	pick	one

1	words	=	['that',	'with',	'have',	'this',	'will',	'your',	

			'from',	'they',	'know',	'want',	'been',	

			'good',	'much',	'some',	'time']

word	=	choice(words)

#	Create	a	missed	list

2	missed	=	[]

#	Start	the	game	loop

3	while	True:

				#	Take	written	input	

				inp	=	input("What's	your	guess?\n").lower()

				#	Stop	the	loop	if	you	key	in	"done"

				if	inp	==	"done":

								break

				#	Check	if	the	letter	is	in	the	word

		4	elif	inp	in	list(word):

								#	If	yes,	put	it	in	the	right	position(s)

								for	w	in	range(4):

												if	inp	==	list(word)[w]:

																t.goto(-250+150*w,-190)

																t.write(inp,font=('Arial',60,'normal'))

				#	If	the	letter	is	not	in	the	word,	show	it	at	the	top

		5	else:

								missed.append(inp)

								t.goto(-290+80*len(missed),60)

								t.write(inp,font=('Arial',60,'normal'))

				#	Update	everything	that	happens	in	the	iteration

				t.update()

try:

				t.bye()

except	t.Terminator:

				print('exit	turtle')

Listing	12-3:	Script	to	put	letters	on	the	game	board

We	first	import	choice()	from	the	random	module	so	the	script	can	randomly
pick	a	word	from	the	list.	We	put	the	15	words	in	the	list	words	1	and	allocate
the	randomly	selected	word	to	word.	At	2,	we	create	the	list	missed	to	hold	all
incorrectly	guessed	letters.	We	then	put	the	script	in	an	infinite	loop	3	to
continuously	take	your	text	input.	If	you	want	to	stop	the	loop,	you	can	enter
done	in	the	Spyder	IPython	console.

At	4,	we	check	whether	the	letter	you	guess	is	in	one	of	the	letters	in	word.
We	use	list(),	which	takes	a	string	variable	as	input	and	breaks	it	into	a	list	of
individual	letters;	for	example,	the	command	list("have")	produces	the	list
["h","a","v","e"].

If	your	guessed	letter	is	in	word,	the	function	checks	every	letter	in	word	to	see
if	your	guess	matches	the	letter	in	that	position.	If	so,	the	function	writes	the
letter	on	the	corresponding	position	onscreen.

If	your	guess	is	not	in	word	5,	the	letter	is	added	to	missed	and	is	written	at

the	top	of	the	screen	in	the	incorrect	guesses	section.

Note	that	we	also	removed	the	line	t.done()	in	this	script.	This	means	that,
once	you	finish	guessing	and	enter	done,	the	script	will	end	and	everything	will
disappear	from	your	screen.

Here’s	the	output	from	one	exchange	with	the	script,	when	the	script	randomly
selected	the	word	have	from	the	list	of	the	15	words,	with	my	typed	input	in
bold:

What's	your	guess?

a

What's	your	guess?

b

What's	your	guess?

v

What's	your	guess?

v

What's	your	guess?

b

What's	your	guess?

h

What's	your	guess?

e

What's	your	guess?

f

What's	your	guess?

g

What's	your	guess?

h

What's	your	guess?

u

What's	your	guess?

done

Figure	12-3	shows	the	resultant	screen.

Figure	12-3:	A	guess-the-word	game	board	with	letters	on	it

It’s	working,	but	you	may	have	noticed	that	some	things	need	improvement.
To	have	a	complete	version	of	guess-the-word,	we	need	the	script	to	do	the
following:

1.	 Prevent	the	players	from	guessing	the	same	letter	more	than	once.	In	my
preceding	interaction,	I	guessed	b,	v,	and	h	twice,	wasting	my	guesses.

2.	 Notify	the	players	when	a	word	is	complete.

3.	 Stop	taking	input	after	a	player	completes	the	word.

4.	 Put	the	six	coins	onscreen	and	remove	one	every	time	a	player	misses	a
letter.

Determine	Valid	Guesses,	Wins,	and	Losses
Next,	we’ll	disallow	duplicate-letter	guesses,	declare	a	win	if	you	complete	the
word	while	missing	fewer	than	six	letters,	and	declare	a	loss	if	not.

Open	guess_letter.py	and	add	the	highlighted	parts	in	Listing	12-4.	Then	save
the	new	script	as	guess_word.py.	A	block	of	code	in	guess_letter.py	is	modified

and	replaced	by	the	newly	added	blocks.	If	you’re	uncertain	what’s	different,
download	the	script	guess_word.py	from	the	book’s	resources	page.

import	turtle	as	t

from	random	import	choice

from	tkinter	import	messagebox

from	tkinter	import	PhotoImage

--snip--

#	Create	a	missed	list

missed	=	[]

#	Load	a	picture	of	the	coin	to	the	script

1	coin	=	PhotoImage(file	=	"cash.png").subsample(10,10)

t.addshape("coin",	t.Shape("image",	coin))

#	Create	six	coins	on	screen	

coins	=	[0]*6

for	i	in	range(6):

				coins[i]	=	t.Turtle('coin')

				coins[i].up()

				coins[i].goto(-100+50*i,0)

2	t.update()

#	Prepare	the	validinputs	and	gotright	lists

3	validinputs	=	list('abcdefghijklmnopqrstuvwxyz')

gotright	=	[]

#	Start	the	game	loop

while	True:

				#	Take	written	input	

				inp	=	input("What's	your	guess?\n").lower()

				#	Stop	the	loop	if	you	key	in	"done"

				if	inp	==	"done":

								break

				#	If	the	letter	is	not	a	valid	input,	remind

				elif	inp	not	in	validinputs:

								messagebox.showerror("Error","Sorry,	that's	an	invalid	

input!")

				#	Otherwise,	go	ahead	with	the	game

		4	else:

								#	Check	if	the	letter	is	in	the	word

								if	inp	in	list(word):

												#	If	yes,	put	it	in	the	right	position(s)

												for	w	in	range(4):

																if	inp	==	list(word)[w]:

																				t.goto(-250+150*w,-190)

																				t.write(inp,font	=	('Arial',60,'normal'))

																				gotright.append(inp)

												#	If	got	four	positions	right,	the	player	wins

												if	len(gotright)	==	4:

																messagebox.showinfo\

																("End	Game","Great	job,	you	got	the	word	right!")

																break

								#	If	the	letter	is	not	in	the	word,	show	it	at	the	top

						5	else:

												#	Reduce	guesses	left	by	1

												score	-=		1

												#	Remove	a	coin

												coins[-(6-score)].hideturtle()

												#	Update	the	number	of	guesses	left	on	board

												left.clear()

												left.write\

												(f"guesses	left:			{score}",font	=	

('Arial',20,'normal'))

												t.update()												

												missed.append(inp)

												t.goto(-290+80*len(missed),60)

												t.write(inp,font	=	('Arial',60,'normal'))

												if	len(missed)	==	6:

																#	If	all	six	chances	are	used	up,	end	game

																messagebox.showinfo\

																("End	Game","Sorry,	you	used	up	all	your	six	

guesses!")

																break	

								#	Remove	the	letter	from	the	validinputs	list

								validinputs.remove(inp)							

				#	Update	everything	that	happens	in	the	iteration

				t.update()

--snip--

Listing	12-4:	A	graphical	guess-the-word	game	that	takes	written	input

We	import	the	messagebox	module	from	the	tkinter	Python	package	again	so
we	can	display	messages	to	the	game	screen.

Starting	at	1,	we	display	the	six	coins	onscreen.	We	update	the	screen	so	that
everything	we	put	there	shows	up	properly	2.

At	3,	we	create	the	list	validinputs,	which	has	the	26	letters	in	the	alphabet
as	elements.	Later	in	the	script,	if	the	player	guesses	a	letter,	we’ll	remove	the
letter	from	the	list	so	that	the	same	letter	can’t	be	guessed	more	than	once.	We
also	create	the	empty	list	gotright.	Later	we’ll	use	it	to	keep	track	of	how	many
positions	the	player	has	guessed	right	in	the	word.

We	start	an	infinite	while	loop	that	asks	for	your	keyboard	input	in	every
iteration.	If	you	enter	done,	the	loop	stops,	and	the	script	quits	taking	input	from
you.	If	you	enter	invalid	input	(either	a	non-letter	or	a	letter	you’ve	already
guessed),	the	script	will	show	a	message	box	indicating	Sorry,	that's	an
invalid	input!

If	you	enter	valid	input	4,	the	script	checks	whether	the	letter	is	in	the	word.
If	yes,	the	script	checks	each	of	the	four	positions	in	the	word	and,	for	each
match,	adds	the	letter	to	the	list	gotright.	Note	that	since	the	same	letter	can
appear	in	a	word	more	than	once,	a	letter	may	be	added	to	the	list	gotright
more	than	once.

The	script	then	checks	whether	gotright	has	four	elements.	If	yes,	it	means
all	four	letters	have	been	correctly	guessed,	and	a	message	box	will	pop	up	with
Great	job,	you	got	the	word	right!

If	the	guessed	letter	is	not	in	the	word	5,	the	value	of	score	is	decreased	by
one,	meaning	the	player	has	one	less	guess	left.	The	script	will	remove	a	coin
from	the	screen	by	using	hideturtle().	The	second	turtle	will	erase	whatever	it
has	drawn	on	the	screen	and	rewrite	the	number	of	guesses	left.	If	the	length	of
the	list	missed	reaches	six,	a	message	box	appears:	Sorry,	you	used	up	all
your	six	guesses!

Here’s	one	exchange	with	the	script	with	the	user	input	in	bold:

What's	your	guess?

a

What's	your	guess?

o

What's	your	guess?

d

What's	your	guess?

c

What's	your	guess?

b

What's	your	guess?

k

What's	your	guess?

m

My	losing	game	is	shown	in	Figure	12-4.

NOTE

Since	the	word	is	randomly	chosen	from	the	15	words,	you	won’t	likely
get	the	same	output	as	mine	even	if	you	use	the	same	guesses.

Figure	12-4:	A	losing	game	of	guess-the-word

TRY	IT	OUT

Run	guess_word.py	and	play	a	few	games,	generating	the	following	instances:	you	make	an
invalid	move,	you	win	the	game	by	completing	the	word	before	missing	six	letters,	and	you
fail	to	complete	the	word	before	missing	six	letters	and	hence	lose	the	game.

The	Voice-Controlled	Version
Now	we’ll	build	on	the	written-input	version	of	the	game	to	add	speech
functionality.	Download	guess_word_hs.py	and	save	it	in	your	chapter	folder.
The	new	code	is	highlighted	in	Listing	12-5.

--snip--

#	Import	functions	from	the	local	package

from	mptpkg	import	voice_to_text,	print_say

--snip--

#	Start	the	game	loop

1	while	True:

				#	Ask	for	your	move

				print_say("What's	your	guess?")

				#	Capture	your	voice	input

				inp	=	voice_to_text().lower()

				print_say(f"you	said	{inp}")

				inp	=	inp.replace('letter	','')

#	Say	"stop	listening"	or	press	CTRL-C	to	stop	the	game

				if	inp	==	"stop	listening":

								break

				#	If	the	letter	is	not	a	valid	input,	remind

				elif	inp	not	in	validinputs:

								print_say("Sorry,	that's	an	invalid	input!")

				#	Otherwise,	go	ahead	with	the	game

		2	else:		

								#	Check	if	the	letter	is	in	the	word

								if	inp	in	list(word):

												#	If	yes,	put	it	in	the	right	position(s)

												for	w	in	range(4):

																if	inp	==	list(word)[w]:

																				t.goto(-250+150*w,-190)

																				t.write(inp,font	=	('Arial',60,'normal'))

																				gotright.append(inp)

												#	If	got	four	positions	right,	the	player	wins

												if	len(gotright)	==	4:

														3	print_say("Great	job,	you	got	the	word	right!")

																messagebox.showinfo\

																("End	Game","Great	job,	you	got	the	word	right!")

																break

								#	If	the	letter	is	not	in	the	word,	show	it	at	the	top

								else:

												#	Reduce	guesses	left	by	1

												score	-=	1

												#	Remove	a	coin

												coins[-(6-score)].hideturtle()

												#	Update	the	number	of	guesses	left	on	board

												left.clear()

												left.write\

												(f"guesses	left:			{score}",font	=	

('Arial',20,'normal'))

												t.update()												

												missed.append(inp)

												t.goto(-290+80*len(missed),60)

												t.write(inp,font	=	('Arial',60,'normal'))

												if	len(missed)	==	6:

																#	If	all	six	changes	are	used	up,	end	game

														4	print_say("Sorry,	you	used	up	all	your	six	

guesses!")

																messagebox.showinfo\

																("End	Game","Sorry,	you	used	up	all	your	six	

guesses!")

--snip--

Listing	12-5:	A	graphical	guess-the-word	game	that	takes	voice	input

We	import	the	usual	functions	from	our	local	package	mptpkg:
voice_to_text()	and	print_say().	Because	we	installed	the	package	(in
editable	mode),	there’s	no	need	to	tell	the	system	where	to	find	it.

We	start	an	infinite	while	loop	that	asks	for	your	choice	of	letter	in	each
iteration	1.	You	speak	your	guess	into	the	microphone,	and	the	script	captures
your	voice	command	and	stores	it	in	inp.	We	make	allowances	so	the	player	can
say	either	“letter	a”	or	just	“a.”	If	the	former,	we	replace	letter	with	an	empty
string	so	that	only	a	is	left	in	the	variable	inp.

To	stop	the	while	loop,	you	say,	“Stop	listening.”	If	your	guess	is	not	in	the
list	validinputs,	the	script	will	answer,	“Sorry,	that’s	an	invalid	input!”	out
loud.	If	your	guess	is	in	validinputs	2,	the	script	checks	whether	the	letter	is
in	the	word.	This	time,	when	you	complete	the	word	without	missing	six	times,
the	game	will	say,	“Great	job,	you	got	the	word	right!”	3.	If	you	guess	wrong
six	times,	the	voice	will	say,	“Sorry,	you	used	up	your	six	guesses!”	4.

Here’s	an	exchange	with	the	script	in	which	the	player	has	successfully
guessed	the	word	good,	missing	only	two	letters:

What's	your	choice?

you	said	letter	a

What's	your	choice?

you	said	letter	d

What's	your	choice?

you	said	letter	f

What's	your	choice?

you	said	letter	o

What's	your	choice?

you	said	letter	g

Great	job,	you	got	the	word	right!

You	can	see	the	screen	in	Figure	12-5.

Figure	12-5:	Winning	the	voice-controlled	guess-the-word	game

TRY	IT	OUT

Run	guess_word_hs.py	and	try	giving	voice	input	in	a	few	different	ways	to	see	what	the
script	best	understands.

Summary
In	this	chapter,	you	created	a	voice-controlled	graphical	guess-the-word	game
that	talks	back	to	you	in	a	human	voice.

You	first	learned	how	to	draw	the	game	board.	You	then	learned	to	upload	a
picture	file	to	the	script	and	scale	it	to	the	size	you	want.	You	used	the	image	to

create	six	coins	on	the	screen	to	represent	monetary	rewards	and	made	them
disappear	from	the	screen	one	by	one.	You	also	learned	how	to	type	in	your
guess	and	have	it	show	up	onscreen.	You	learned	how	to	disallow	guessing	the
same	letter	twice	and	how	to	determine	whether	a	player	has	won	or	lost	the
game.

You	added	the	speech	recognition	and	text-to-speech	features	so	that	the	game
can	be	voice	controlled.	Along	the	way,	you	learned	how	to	create	an	image	by
manipulating	a	picture	file	in	turtle	and	how	to	use	multiple	turtles	to	reduce	the
number	of	objects	you	have	to	redraw	on	the	screen.

End-of-Chapter	Exercises
1.	 Modify	show_coins.py	so	that	the	positions	of	the	six	coins	are	10	pixels

below	their	current	positions	vertically.	Keep	the	positions	of	everything	else
the	same.

2.	 Modify	show_coins.py	so	that	the	leftmost	coin	disappears	from	the	screen
first	and	the	rightmost	one	is	the	last	to	disappear.

3.	 Try	to	figure	out	what	the	following	line	of	code	will	produce.	First	write
down	your	answer	and	then	run	the	code	in	Spyder	to	verify.

list('Hi	Python')

13
SMART	GAMES:	ADDING	INTELLIGENCE

In	the	one-player	version	of	Connect	Four
we	built	in	Chapter	11,	the	computer
always	randomly	selects	a	move.	This

allowed	us	to	focus	on	the	game’s	speech	recognition	and
text-to-speech	aspects.
However,	once	you	play	against	the	random	computer	for	a	few	games,	you

start	to	wonder	if	there’s	a	way	to	make	our	Connect	Four	game	more
challenging.	The	answer	is	yes,	and	in	this	chapter,	you’ll	learn	to	make	an
intelligent	Connect	Four	opponent.

In	one	approach,	we’ll	ask	the	script	to	think	three	steps	ahead,	as	people	do
when	playing	a	game:	two	moves	by	the	computer	and	one	by	the	player.

In	the	first	step,	the	computer	checks	whether	a	move	leads	to	winning	the
game	right	away.	If	yes,	the	computer	will	take	it.

Thinking	two	steps	ahead	in	Connect	Four	means	the	computer	tries	to
prevent	the	opponent	from	winning	in	the	next	turn.	This	is	complicated,	because
sometimes	the	computer	must	block	a	position	and	other	times	it	must	avoid
taking	a	position.	The	computer	will	distinguish	these	two	cases	and	block	some
moves	and	avoid	others	to	prevent	the	opponent	from	winning.

By	thinking	three	steps	ahead,	the	computer	will	follow	the	path	that	most
likely	leads	to	a	victory	for	the	computer	after	three	moves.	In	many	scenarios,
thinking	three	steps	ahead	can	guarantee	a	win	in	three	steps.	In	particular,	if
there	is	a	move	that	guarantees	the	computer	to	win	in	three	moves,	the
computer	will	select	that	as	the	best	next	move.

The	second	method	uses	an	approach	that	could	be	classified	as	a	type	of
machine	learning.	You’ll	simulate	a	million	games	in	which	both	players	select
random	moves.	You’ll	then	record	the	outcome	and	the	intermediate	steps.	With
this	data,	the	computer	will	learn	at	each	move	and	select	the	one	most	likely	to
lead	to	a	winning	outcome.

We’ll	assess	the	effectiveness	of	the	two	strategies	and	choose	the	one	that	is
more	difficult	to	beat.	We’ll	then	add	speech	recognition	and	text-to-speech
features	to	the	intelligent	Connect	Four.

Along	the	way,	I’ll	also	challenge	you	to	apply	the	same	methods	to	the	tic-
tac-toe	game	in	the	“End-of-Chapter	Exercises”	on	page	267.	As	always,	all
scripts	are	available	at	https://www.nostarch.com/make-python-talk/,	and	you
should	create	the	folder	/mpt/ch13/	for	this	chapter.

NEW	SKILLS

Getting	your	computer	games	to	think	one,	two,	and	three	steps	ahead

Understanding	the	difference	between	deepcopy	and	assignment	statements

Creating	simulated	games

Using	basic	machine-learning	skills	to	create	intelligent	games

Using	pickle	to	save	and	open	data	files

Testing	the	effectiveness	of	game	strategies

The	Think-Three-Steps-Ahead	Strategy
We’ll	first	use	the	mouse-click	version	of	Connect	Four	to	speed	up	the	testing
of	scripts.	After	we	incorporate	the	strategy	of	thinking	three	steps	ahead,	we’ll
add	the	speech	features	back.

Think	One	Step	Ahead
Thinking	one	step	ahead	in	Connect	Four	is	easy.	The	computer	checks	all
possible	next	moves,	and	if	one	of	them	will	lead	to	a	win	right	away,	the
computer	will	take	it.

Download	conn_think1.py	from	the	book’s	resources	and	save	it	in	your
chapter	folder.	This	is	based	on	the	script	conn_click.py	in	Chapter	11,	but	I’ve

https://www.nostarch.com/make-python-talk/

altered	the	code	so	that	you’re	playing	against	an	automated	player	that	thinks
one	step	ahead	rather	than	another	human	player.

NOTE

In	Chapter	17,	you’ll	learn	how	to	choose	your	opponent:	a	human
player,	a	simple	automated	player	(computer)	that	chooses	random
moves,	or	an	automated	player	that	chooses	smart	moves.

Listing	13-1	highlights	the	key	parts	of	conn_think1.py.

--snip--

from	random	import	choice

from	copy	import	deepcopy

--snip--

#	Define	a	horizontal4()	function	to	check	connecting	4	

horizontally

1	def	horizontal4(x,	y,	color,	board):

				win	=	False

				for	dif	in	(-3,	-2,	-1,	0):

								try:

												if	board[x+dif][y]	==	color\

												and	board[x+dif+1][y]	==	color\

												and	board[x+dif+2][y]	==	color\

												and	board[x+dif+3][y]	==	color\

												and		x+dif	>=	0:

																win	=	True

								except	IndexError:

												pass

				return	win					

#	Define	a	vertical4()	function	to	check	connecting	4	vertically

def	vertical4(x,	y,	color,	board):

--snip--

#	Define	a	win_game()	function	to	check	if	someone	wins	the	game

2	def	win_game(num,	color,	board):

				win	=	False

				#	Convert	column	and	row	numbers	to	indexes	in	the	list	of	

lists	board

				x	=	num-1

				y	=	len(board[x])-1

				#	Check	all	winning	possibilities

				if	vertical4(x,	y,	color,	board)	==	True:

								win	=	True

				if	horizontal4(x,	y,	color,	board)	==	True:

								win	=	True

				if	forward4(x,	y,	color,	board)	==	True:

								win	=	True

				if	back4(x,	y,	color,	board)	==	True:

								win	=	True

				#	Return	the	value	stored	in	win

				return	win

				--snip--

#	Define	the	best_move()	function

3	def	best_move():

				#	Take	column	4	in	the	first	move

				if	len(occupied[3])	==	0:

								return	4

				#	If	only	one	column	has	free	slots,	take	it

				if	len(validinputs)	==	1:

								return	validinputs[0]

				#	Otherwise,	see	what	will	happen	in	the	next	move	

hypothetically	

		4	winner	=	[]

				#	Go	through	all	possible	moves	and	see	if	there	is	a	winning	

move

				for	move	in	validinputs:

								tooccupy	=	deepcopy(occupied)

								tooccupy[move-1].append('red')

								if	win_game(move,'red',tooccupy)	==	True:

												winner.append(move)								

				#	If	there	is	a	winning	move,	take	it

				if	len(winner)>0:

												return	winner[0]	

5	def	computer_move():

				global	turn,	rounds,	validinputs

				#	Choose	the	best	move

				col	=	best_move()

				if	col	==	None:

								col	=	choice(validinputs)

				#	Calculate	the	lowest	available	row	number	in	that	column

				row	=	1+len(occupied[col-1])

--snip--

				#	Check	if	the	player	has	won	the	game

		6	if	win_game(col,	turn,	occupied)	==	True:

--snip--

#	Computer	moves	first

computer_move()

#	Define	a	function	conn()	to	place	a	disc	in	a	cell

def	conn(x,y):

				#	Declare	global	variables

				global	turn,	rounds,	validinputs

--snip--

						7	if	win_game(col,	turn,	occupied)	==	True:

--snip--

				#	Computer	moves	next

				if	len(validinputs)>0:

								computer_move()

--snip--

Listing	13-1:	Think	one	step	ahead	in	the	Connect	Four	game.

We	import	all	needed	modules.	In	particular,	we	import	choice()	from	the
random	module	and	deepcopy()	from	the	copy	module.	The	copy	module	is	in
the	Python	standard	library,	so	no	installation	is	needed.

To	search	for	the	best	strategy,	we’ll	look	one	step	ahead	and	see	what	would
happen	hypothetically	if	certain	actions	were	taken.	We	need	deepcopy()	to
copy	a	list	without	altering	the	original	list.	We	can’t	simply	use	assignment
statements	in	this	script	when	copying	lists.	Assignment	statements	in	Python
create	a	link	to	the	original	list	object,	so	if	we	alter	the	copy,	we	alter	the
original	as	well.	Altering	the	original	list	is	not	what	we	intend	and	would	cause
unexpected	behavior.

WARNING

Assignment	statements	in	Python	don’t	copy	objects.	Instead,	they	create
bindings	between	a	target	and	an	object.	If	we	use	an	assignment
statement	to	create	a	copy	of	the	list	occupied	in	conn_think1.py	and
make	changes	to	the	copy,	the	original	will	be	altered	as	well.

At	1,	we	make	horizontal4(x,y,color,board)more	general	so	that	it	can
be	applied	to	any	four	arguments.	Later	in	the	script,	we’ll	use	it	to	check
whether	certain	moves	win	the	game	by	collecting	four	discs	horizontally	in	a
hypothetical	situation.	We	define	the	functions	vertical4(),	forward4(),	and
back4()	in	a	similar	way.

At	2,	we	define	win_game(num,color,board),	which	checks	whether	the
player	has	won	in	any	of	the	preceding	four	scenarios.	We’ve	also	omitted	the
row	number	as	an	argument	because	it	will	be	inferred	from	the	argument	board.

The	main	action	is	in	best_move(),	starting	at	3.	This	function	searches	for
the	best	move	for	the	computer	(the	red	player).	If	column	4	is	empty,	the
computer	takes	the	center	column.	Since	the	red	player	moves	first,	this	line	of
code	ensures	that	the	very	first	move	of	the	game	is	always	the	center	column	4,
giving	whoever	makes	the	first	move	an	advantage.

NOTE

Since	our	goal	in	this	chapter	is	to	make	Connect	Four	more
challenging,	we	let	the	computer	move	first.	However,	letting	the	human
play	first	is	straightforward,	and	we’ll	leave	that	as	an	exercise	at	the
end	of	the	chapter.	In	Chapter	17,	you’ll	see	how	to	choose	who	plays
first.

If	only	one	move	is	left	(that	is,	six	columns	are	full	and	only	one	column	has
empty	cells),	there’s	no	point	searching	for	a	best	move,	so	the	computer	takes
the	only	remaining	move.

If	more	than	one	move	remains,	the	function	checks	every	possible	move	to
see	if	any	will	lead	to	a	win	for	the	computer	right	away.	The	script	creates	the
list	winner	to	contain	the	potentially	winning	moves	4.	We	go	through	all
possible	next	moves.	We	use	win_game()	to	check	whether	a	move	will	win	the
game	hypothetically.	If	yes,	the	move	is	added	to	winner.	The	function	then
checks	whether	winner	is	empty,	and	if	it	isn’t,	the	computer	takes	the	first
available	move	in	the	list.

We	then	define	computer_move()5.	When	called,	this	function	tells	the
computer	to	make	the	move	produced	by	best_move().	The	computer	then
places	a	disc	in	the	corresponding	column.	Once	the	computer	places	the	disc,
the	script	uses	win_game()	to	check	if	the	move	wins	the	game	6.

The	computer	makes	the	first	move	of	the	game.	After	that,	we	define	conn(),
which	allows	you	to	click	the	screen	to	play	your	move.	The	script	checks
whether	your	move	wins	the	game	7.	The	computer	will	move	after	you	if	the
game	isn’t	over.

Run	the	script	several	times	and	play	against	the	computer.	You’ll	notice	that
the	computer	will	always	take	the	winning	move	if	there	is	one.	For	example,	at
the	left	of	Figure	13-1,	an	opportunity	emerges	for	the	red	player	to	take	column

7	and	win	the	game.	The	computer	thinks	one	step	ahead	and	takes	the	winning
move.

Figure	13-1:	A	Connect	Four	game	that	thinks	one	step	ahead

TRY	IT	OUT

Run	conn_think1.py	and	create	opportunities	for	the	computer	to	win.	See	if	the	computer
takes	the	winning	move	right	away.

Think	Two	Steps	Ahead
Thinking	two	steps	ahead	in	Connect	Four	is	a	little	complicated.	The
computer’s	next	move	can	either	block	the	opponent	(which	is	you)	or	help	the
opponent’s	chance	of	winning	the	game	on	the	next	turn.

We’ll	separate	these	two	cases:	if	the	computer’s	move	blocks	the	opponent’s
chance	of	winning,	the	script	will	take	it;	if	the	computer’s	move	helps	the
opponent’s	chance	of	winning,	the	script	will	avoid	it.	Let’s	use	examples	to
demonstrate	the	two	cases.

Moves	to	Avoid
In	this	example,	the	computer	should	avoid	a	certain	move	so	that	the	opponent
won’t	win	on	the	next	turn.

At	the	left	of	Figure	13-2,	it’s	the	red	player’s	turn.	If	the	red	player	chooses
column	6	as	the	next	move,	the	opponent	can	win	on	the	following	turn,	as
shown	on	the	right	in	the	figure.	Therefore,	the	red	player	should	avoid	this
move.

Figure	13-2:	The	red	player	should	avoid	column	6	in	this	example.

Here,	the	red	player	has	made	a	move	that	allows	yellow	to	win.	We	can	avoid
that	win	with	this	rule:	if	you	make	a	next	move	x,	and	your	opponent	places	a
disc	in	the	same	column	x	two	steps	ahead	and	wins	the	game,	you	should	avoid

the	move	x	in	the	next	step.

Moves	to	Block
In	the	next	case,	the	computer	should	block	a	certain	move	so	the	opponent
won’t	win	in	two	steps.

At	the	left	in	Figure	13-3,	it’s	the	red	player’s	turn.	If	the	red	player	doesn’t
choose	column	3	in	the	next	move,	the	opponent	can	choose	column	3	and	win
on	the	following	turn.	Therefore,	the	red	player	should	block	this	move.

Figure	13-3:	The	red	player	should	block	column	3.

Here,	the	red	player	makes	a	different	move—column	6—and	loses	the	game.
So	the	rule	is	as	follows:	if	red	makes	the	next	move,	x,	and	the	yellow	opponent
can	make	a	different	move	y	within	two	steps	and	win,	red	should	block	yellow’s
move	y	in	the	next	step.

Implement	the	Think-Two-Steps-Ahead	Strategy
Let’s	allow	the	computer	to	think	up	to	two	steps	ahead	by	using	the	three
techniques	just	discussed	(one	for	thinking	one	step	ahead,	two	for	thinking	two
steps	ahead).

Open	conn_think1.py,	replace	its	best_move()	with	the	new	best_move()
function	defined	in	Listing	13-2,	and	save	the	new	script	as	conn_think2.py	in
your	chapter	folder	(or	you	can	download	it	from	the	book’s	resources).

--snip--

#	Define	the	best_move()	function

def	best_move():

				#	Take	column	4	in	the	first	move

				if	len(occupied[3])	==	0:

								return	4

				#	If	only	one	column	has	free	slots,	take	it

				if	len(validinputs)	==	1:

								return	validinputs[0]

				#	Otherwise,	see	what	will	happen	in	the	next	move	

hypothetically	

				winner	=	[]

				#	Go	through	all	possible	moves	and	see	if	there	is	a	winning	

move

		1	for	move	in	validinputs:

								tooccupy	=	deepcopy(occupied)

								tooccupy[move-1].append('red')

								if	win_game(move,'red',tooccupy)	==	True:

												winner.append(move)								

				#	If	there	is	a	winning	move,	take	it

				if	len(winner)>0:

								return	winner[0]		

				#	If	no	winning	move,	look	two	steps	ahead

		2	if	len(winner)	==	0	and	len(validinputs)>=2:

								loser	=	[]

								#	Check	if	your	opponent	has	a	winning	move

								for	m1	in	validinputs:

												for	m2	in	validinputs:

																if	m2	!=	m1:

																				tooccupy	=	deepcopy(occupied)

																				tooccupy[m1-1].append('red')

																				tooccupy[m2-1].append('yellow')

																				if	win_game(m2,	'yellow',tooccupy)	==	True:

																								winner.append(m2)	

																if	m2	==	m1	and	len(occupied[m1-1])	<=	4:

																				tooccupy2	=	deepcopy(occupied)

																				tooccupy2[m1-1].append('red')

																				tooccupy2[m2-1].append('yellow')

																				if	win_game(m2,'yellow',tooccupy2)	==	True:

																								loser.append(m2)	

								#	If	your	opponent	has	a	winning	move,	block	it

								if	len(winner)>0:

												return	winner[0]

								#	If	you	can	make	a	move	to	help	your	opponent	to	win,	

avoid	it

						3	if	len(loser)>0:

												myvalids	=	deepcopy(validinputs)

												for	i	in	range(len(loser)):

																myvalids.remove(loser[i])

												if	len(myvalids)>0:

																return	choice(myvalids)		

--snip--

Listing	13-2:	Allow	the	computer	to	think	up	to	two	steps	ahead.

In	the	newly	defined	function	best_move(),	the	script	searches	for	the	best
move	based	on	discs	currently	on	the	board.	If	this	is	the	very	first	move	of	the
game,	the	function	takes	the	column	in	the	middle.	If	only	one	move	is	left,	the
function	defines	the	best	move	to	be	the	only	move	left.

If	more	than	one	move	remains,	the	function	checks	every	possible	move	to
see	if	any	will	lead	to	a	win	for	the	red	player	(the	computer)	right	away	1.	If
yes,	the	function	returns	the	move	as	the	best	move	and	stores	it	in	winner.	If
not,	the	function	will	look	two	steps	ahead	to	see	if	the	opponent	can	win	within
two	steps	2.

The	function	checks	two	separate	cases:	if	the	red	player’s	move	m1	(the	first
move)	and	the	yellow	player’s	move	m2	(the	second	move)	lead	to	a	win	for	the
yellow	player	in	two	steps,	we	add	the	move	m2	to	the	list	winner.	If	the	red
player’s	move	m1	and	the	yellow	player’s	move	m2=m1	lead	to	a	win	for	the
yellow	player	in	two	steps,	we	add	the	move	m2	to	the	list	loser.

The	script	checks	whether	winner	is	empty.	If	it	isn’t,	the	computer	will	select
the	opponent’s	winning	move	to	block	the	opponent	from	winning.	Otherwise,
the	computer	will	check	whether	the	list	loser	is	empty.	If	not,	the	computer
will	avoid	all	elements	in	loser	so	as	not	to	help	the	opponent	win	3.

Run	conn_think2.py	and	play	a	few	times	against	the	computer.	You’ll	notice
an	improvement	in	the	game	in	the	sense	that	the	computer	can	now	think	two
steps	ahead	and	try	to	prevent	you	from	winning	on	your	next	turn.

TRY	IT	OUT

Run	conn_think2.py	and	try	to	win	the	game	yourself.	Pay	attention	to	whether	the	computer
prevents	you	from	winning	if	such	opportunities	arise.

Think	Three	Steps	Ahead
This	next	section	will	allow	the	computer	to	think	up	to	three	steps	ahead	before
taking	its	turn.	If	the	computer	has	no	winning	move	in	the	next	step	and	the
opponent	has	no	winning	moves	two	steps	ahead,	the	computer	will	look	three
steps	ahead.

The	computer	will	take	the	next	move	that	most	likely	leads	to	a	win	in	three
steps.	In	particular,	if	there’s	a	next	move	that	guarantees	the	computer	to	win	in
three	steps,	the	computer	will	select	that	next	move	as	the	best	one.	Let’s	use	an
example	to	demonstrate.

An	Example	of	a	Win	in	Three	Steps
The	script	conn_think2.py	is	harder	to	beat	than	conn_think1.py,	but	not
impossible.	A	sophisticated	player	will	notice	that	the	computer	misses	some
moves	that	could	have	led	to	a	win	in	three	steps.

Here’s	an	example.	At	the	left	of	Figure	13-4,	it’s	the	computer’s	(the	red
player’s)	turn	to	move.	If	the	computer	drops	a	disc	in	column	3,	the	computer	is
guaranteed	to	win	on	its	next	turn,	because	the	opponent	(the	yellow	player)	can
block	only	either	column	1	or	column	5.	The	computer	can	then	occupy	the	other
column	(either	column	5	or	column	1)	in	this	third	step	and	win	the	game.

But	instead,	the	computer	chooses	column	6,	as	shown	at	the	right	of	Figure
13-4,	missing	a	chance	to	guarantee	a	win.

Figure	13-4:	The	computer	(the	red	player)	fails	to	make	a	move	that	guarantees	a	win.

We	should,	therefore,	make	further	improvements	on	the	game.	You’ll	build	a
game	that	thinks	three	steps	ahead.

Implement	the	Think-Three-Steps-Ahead	Strategy
Let’s	allow	the	computer	to	think	up	to	three	steps	ahead.

Open	conn_think2.py,	add	the	newly	defined	validmoves()	function	and	the
highlighted	part	in	Listing	13-3	to	the	best_move()	function,	and	save	the	new
script	as	conn_think.py	in	your	chapter	folder.	Alternatively,	you	can	download	it
from	the	book’s	resources.	This	is	the	complete	script	for	our	think-ahead
strategy.

--snip--

#	Define	the	validmoves()	function	to	ensure	three	future	moves	

#	will	not	cause	any	column	to	have	more	than	six	discs	in	it	

def	validmoves(m1,m2,m3,occupied):

				validmove	=	False

				if	m1	==	m2	==	m3	and	len(occupied[m1-1])	<=	3:

								validmove	=	True

				if	m1	==	m2	and	m2	!=	m3	and	len(occupied[m1-1])	<=	4:

								validmove	=	True

				if	m1	==	m3	and	m2	!=	m3	and	len(occupied[m1-1])	<=	4:

								validmove	=	True

				if	m3	==	m2	and	m2	!=	m1	and	len(occupied[m3-1])	<=	4:

								validmove	=	True

				return	validmove

#	Define	the	best_move()	function

def	best_move():

				#	Take	column	4	in	the	first	move

--snip--

#	Otherwise,	look	3	moves	ahead

						1	if	len(winner)	==	0	and	len(loser)	==	0:

												#	Look	at	all	possible	combinations	of	3	moves	ahead

												for	m1	in	validinputs:

																for	m2	in	validinputs:

																				for	m3	in	validinputs:

																								if	validmoves(m1,m2,m3,occupied)	==	True:		

																												tooccupy3	=	deepcopy(occupied)

																												tooccupy3[m1-1].append('red')

																												tooccupy3[m2-1].append('yellow')

																												tooccupy3[m3-1].append('red')

																												if	win_game(m3,	'red',	tooccupy3)	==	

True:

																																winner.append(m1)	

												#	See	if	there	is	a	move	now	that	can	lead	to	winning	

in	3	moves

												if	len(winner)>0:

													2	cnt	=	{winner.count(x):x	for	x	in	winner}

															maxcnt	=	sorted(cnt.keys())[-1]

															return	cnt[maxcnt]

--snip--

Listing	13-3:	Allow	the	computer	to	think	up	to	three	steps	ahead.

We	first	define	validmoves(m1,m2,m3,occupied)	to	ensure	that	none	of	the
three	future	hypothetical	moves	m1,	m2,	and	m3	on	the	game	board	(represented
by	the	list	of	lists	occupied)	will	cause	any	columns	to	have	more	than	six	discs.
If	the	three	moves	cause	any	of	the	seven	columns	to	contain	more	than	six
discs,	the	function	returns	False;	otherwise,	it	returns	True.

As	in	conn_think2.py,	the	computer	first	checks	whether	a	winning	move
could	be	made	right	away.	If	yes,	it	will	take	it.	If	not,	it	checks	whether	a
winning	move	could	be	made	two	steps	ahead	for	the	opponent.	If	yes,	the
computer	tries	to	prevent	it.

If	no	winning	moves	are	available	for	the	opponent	two	steps	ahead,	the

computer	looks	three	steps	ahead	1.	It	checks	all	combinations	of	three	moves:
the	computer’s	next	move,	m1;	the	opponent’s	move	two	steps	ahead,	m2;	and	the
computer’s	move	at	the	third	step,	m3.	If	a	combination	leads	to	a	win	for	the
player,	the	next	move	m1	is	added	to	the	list	winner.

However,	just	because	a	move	x	is	in	winner	doesn’t	mean	this	move	will
guarantee	a	computer	win	in	three	steps,	because	it	can’t	guarantee	that	the
opponent	will	choose	m2	in	the	second	step.	Further,	winner	could	contain
multiple	values.	The	function	best_move()	therefore	looks	for	the	most	frequent
value	in	winner,	since	that’s	the	move	most	likely	to	lead	to	a	win	for	the
computer	in	three	steps.

As	with	most	things	in	Python,	there	are	many	ways	to	find	the	most	frequent
value	in	a	list.	We	utilize	a	trick	known	as	a	list	comprehension	to	create	an
inline	dictionary	cnt.	In	this	dictionary,	the	key	is	the	number	of	times	a	move
appears	in	winner,	and	the	value	is	the	move	2.	For	example,	if	winner	has	six
elements	[7,	6,	6,	5,	5,	5],	the	dictionary	cnt	would	be	{1:7,	2:6,	3:5}.
We	then	sort	the	keys	in	cnt	to	find	the	highest	frequency	and	call	it	maxcnt.
Here,	maxcnt	has	a	value	of	3	because	the	highest	number	of	times	a	value
appears	is	three.	Finally,	we	use	maxcnt	to	retrieve	the	dictionary	element	with
the	highest	frequency.	Here,	the	move	5	appears	most	frequently	in	winner.

If	you	run	conn_think.py	and	play	the	game,	you’ll	find	the	computer	almost
impossible	to	beat.	If	you	do	everything	right,	you	can	tie	the	game.	The	moment
you	make	a	wrong	move,	the	computer	will	seize	the	opportunity	and	win	the
game.

TRY	IT	OUT

Run	conn_think.py	five	times	and	try	your	best	to	win	each	game.	See	how	many	games	you
can	manage	to	win.

The	Machine-Learning	Strategy
Another	way	to	make	Connect	Four	smart	is	to	let	the	computer	learn	from
actual	game	outcomes.	You’ll	generate	a	million	games	in	which	both	players
use	random	moves.	You’ll	record	the	intermediate	steps	and	the	outcome	of	each
game.	The	computer	will	use	the	game	outcome	data	to	design	the	best	strategy.

At	each	move,	the	computer	looks	at	all	games	with	the	same	game	history	as
the	current	game	board.	It	calculates	the	average	outcome	for	each	possible	next
move	and	chooses	the	one	that	most	likely	leads	to	a	favorable	outcome.

Create	a	Dataset	of	Simulated	Games
The	first	step	in	the	machine-learning	strategy	is	to	generate	data	to	learn	from.
We’ll	simulate	two	players	choosing	random	moves	and	record	both	the	outcome
and	the	steps	taken	to	reach	that	outcome.	Even	though	the	moves	by	both
players	are	random,	we	repeat	the	game	many	times.	The	randomness	in	all	these
games	is	washed	out	by	the	law	of	large	numbers.	As	a	result,	the	outcome	data
will	be	useful	to	the	computer	to	predict	the	outcome	of	a	move.

NOTE

In	statistics,	the	law	of	large	numbers	says	that	if	you	perform	the	same
experiment	many	times,	the	average	outcome	should	be	close	to	the
expected	value.	See	an	example	at
https://en.wikipedia.org/wiki/Law_of_large_numbers.	In	our	setting,	if
the	average	outcome	from	playing	move	A	is	better	than	the	average
outcome	from	playing	move	B	over	a	large	number	of	trials,	move	A
should	be	chosen	over	move	B.

Download	conn_simulation.py	from	the	book’s	resources.	I	explain	the	script
in	Listing	13-4.

from	random	import	choice

import	pickle

#	Define	a	simulate()	function	to	generate	a	complete	game

		def	simulate():

				occupied=[list(),list(),list(),list(),list(),list(),list()]

				validinputs=[1,2,3,4,5,6,7]

#	Define	a	horizontal4()	function	to	check	connecting	4	

horizontally

def	horizontal4(x,	y,	turn):

				win=False

				for	dif	in	(-3,	-2,	-1,	0):

--snip--

		1	def	win_game(col,	row,	turn):

https://en.wikipedia.org/wiki/Law_of_large_numbers

								win=False

--snip--

								#	Return	the	value	stored	in	win

								return	win

				#	The	red	player	takes	the	first	move	

		2	turn="red"

				#	Keep	track	of	all	intermediate	moves

				moves=[]

				#	Use	winlose	to	record	game	outcome,	default	value	is	0	(a	

tie)

				winlose=[0]

				#	Play	a	maximum	of	42	steps

		3	for	i	in	range(42):

								#	The	player	randomly	selects	a	move

								col=choice(validinputs)

								row=len(occupied[col-1])+1

								moves.append(col)

								#	Check	if	the	player	has	won

								if	win_game(col,	row,	turn)==True:

												if	turn=='red':

																winlose[0]=1

												if	turn=='yellow':

																winlose[0]=-1

												break

								#	Add	the	move	to	the	occupied	list	to	keep	track

								occupied[col-1].append(turn)

								#	Update	the	list	of	valid	moves

								if	len(occupied[col-1])==6	and	col	in	validinputs:

												validinputs.remove(col)

								#	Give	the	turn	to	the	other	player

								if	turn=="red":

												turn="yellow"

								else:

												turn="red"	

				#	Record	both	game	outcome	and	intermediate	steps

				return	winlose+moves

#	Simulate	the	game	1	million	times	and	record	all	games

results=[]								

4	for	x	in	range(1000000):

				result=simulate()

				results.append(result)

#	Save	the	simulation	data	on	your	computer

5	with	open('conn_simulates.pickle',	'wb')	as	fp:

				pickle.dump(results,fp)

#	Read	the	data	and	print	out	the	first	10	games

with	open('conn_simulates.pickle',	'rb')	as	fp:

				mylist=pickle.load(fp)

print(mylist[0:10])

Listing	13-4:	Simulating	a	million	Connect	Four	games

We	first	define	simulate().	When	called,	it	simulates	a	complete	Connect
Four	game	and	records	each	move	and	the	game	outcome.	We	omit	the	graphics
part	of	the	game	to	save	time.

We	define	win_game()	to	check	if	a	player	has	won	the	game	1.	In	each
game,	the	red	player	moves	first	2.	We	create	the	two	lists	moves	and	winlose
to	record	the	intermediate	moves	and	the	game	outcome,	respectively.

We	create	a	game	loop	to	iterate	a	maximum	of	42	times	because	each
Connect	Four	game	has	a	maximum	of	42	moves	3.	In	each	iteration,	a	player
randomly	selects	a	move.	The	move	is	added	to	moves	to	keep	track	of	the
history	of	the	game.	At	each	step,	we	check	whether	a	player	wins.	If	yes,	we’ll
record	an	outcome	of	1	if	the	winner	is	the	red	player	and	-1	if	the	winner	is	the
yellow	player.	The	default	outcome	is	a	tie,	in	which	case	we’ll	record	a	value	of
0.

We	then	call	simulate()	a	million	times	4.	The	result	of	each	game	is	saved
in	a	list	result,	with	its	first	element	being	the	outcome	of	the	game	(-1,	1,	or
0),	followed	by	the	intermediate	steps	of	the	game.

The	outcomes	and	intermediate	steps	of	the	million	games	are	saved	in
conn_simulates.pickle	for	later	use	5.	We	print	out	the	results	of	the	first	10
games,	shown	in	Listing	13-5.

[[1,	1,	7,	1,	5,	7,	6,	5,	1,	5,	7,	5,	2,	5],	

[1,	5,	4,	2,	7,	5,	2,	5,	6,	2,	7,	5],	

[1,	7,	3,	5,	5,	3,	7,	3,	7,	4,	2,	7,	7,	6],	

[-1,	6,	7,	6,	6,	5,	1,	5,	3,	5,	7,	6,	5,	4,	2,	5,	7,	3,	4,

7,	1,	1,	6,	4,	5,	6,	1,	1,	4,	1,	7,	3,	3,	7,	2,	3,	2,	3,	4],	

[-1,	1,	3,	5,	1,	4,	5,	4,	6,	2,	7,	3,	2,	3,	4,	2,	3],	

[1,	6,	5,	7,	1,	3,	3,	1,	5,	5,	5,	2,	3,	6,	7,	2,	6,	3,	2,	7,	

5,	4,	3,	7,	6,	7,	6,	6,	1,	2,	2,	4,	5,	4,	7,	3,	2,	1,	1,	4],	

[1,	2,	5,	3,	5,	3,	4,	7,	7,	5,	3,	4,	2,	2,	2,	5,	4,	4,	4,	4,	6,	

6],	

[1,	2,	5,	6,	4,	6,	7,	5,	5,	7,	4,	1,	3,	6,	3,	2,	1,	7,	1,	6],	

[1,	7,	4,	4,	6,	3,	1,	2,	2,	3,	3,	4,	6,	3,	6,	1,	3,	4,	1,	3,	7,	

7,	5,	4],	

[-1,	1,	4,	1,	4,	1,	2,	4,	5,	6,	6,	6,	3]]	

Listing	13-5:	The	first	10	simulated	Connect	Four	games

For	example,	the	output	for	the	first	game	is	[1,	1,	7,	1,	5,	7,	6,	5,	1,
5,	7,	5,	2,	5].	The	first	element,	1,	means	that	the	red	player	has	won	the
game.	The	remaining	elements,	1,	7,	1	...	,	indicate	the	columns	the	players
dropped	their	discs	into,	alternating	between	red	and	yellow.	The	red	player
eventually	wins	this	game	by	connecting	four	red	discs	vertically	in	column	5.

TRY	IT	OUT

Run	conn_simulation.py	and	print	out	the	first	10	games	in	the	generated	dataset.	Interpret
the	numbers	in	each	game	and	confirm	that	the	intermediate	steps	are	consistent	with	the
game’s	outcome.

Apply	the	Data
The	next	step	is	to	use	the	outcome	data	to	design	intelligent	moves	for	the
computer.	At	each	move,	the	computer	will	turn	to	the	simulated	data	to	retrieve
all	games	with	the	same	history.	It	searches	through	all	possible	next	moves,
finds	the	one	that	leads	to	the	most	favorable	outcome,	and	uses	that	as	the	next
move.

Download	conn_ml.py	and	save	it	in	your	chapter	folder.	The	script	is	based
on	conn_think.py.	Listing	13-6	highlights	the	main	differences.

--snip--

#	A	history	of	moves	made

moves_made=[]

#	Obtain	game	data

with	open('conn_simulates.pickle',	'rb')	as	fp:

				gamedata=pickle.load(fp)

#	Define	the	best_move()	function

1	def	best_move():

				#	Take	column	4	in	the	first	move

				if	len(occupied[3])==0:

								return	4

				#	If	there	is	only	one	column	has	free	slots,	use	the	column

				if	len(validinputs)==1:

								return	validinputs[0]

				simu=[]

				for	y	in	gamedata:

							if	y[1:len(moves_made)+1]==moves_made:

											simu.append(y)

				#	Now	we	look	at	the	next	move;	

				outcomes={x:[]	for	x	in	validinputs}	

				#	We	collect	all	the	outcomes	for	each	next	move

				for	y	in	simu:

							outcomes[y[len(moves_made)+1]].append(y[0])

				#	Set	the	initial	value	of	bestoutcome

				bestoutcome=-2;

				#	Randomly	select	a	move	to	be	best_move

				best_move=validinputs[0]

				#	iterate	through	all	possible	next	moves	

				for	move	in	validinputs:

								if	len(outcomes[move])>0:

												outcome=sum(outcomes[move])/len(outcomes[move])

												#	If	the	average	outcome	beats	the	current	best	

												if	outcome>bestoutcome:

																#	Update	the	bestoutcome

																bestoutcome=outcome

																#	Update	the	best	move

																best_move=move

				return	best_move

#	Define	a	function	computer_move()

2	def	computer_move():

				#	Declare	global	variables

				global	turn,	rounds,	validinputs

				#	Get	the	best	move

				col=best_move()

				if	col==None:

								col=choice(validinputs)

--snip--

				moves_made.append(col)

--snip--

#	Computer	moves	first

3	computer_move()

#	Define	a	function	conn()	to	place	a	disc	in	a	cell

4	def	conn(x,y):

				#	Declare	global	variables

				global	turn,	rounds,	validinputs

--snip--

				moves_made.append(col)

--snip--

				#	Computer	moves	next

				if	len(validinputs)>0:

								computer_move()

--snip--

Listing	13-6:	A	Connect	Four	game	player	with	the	machine-learning	strategy

We	create	the	new	list	moves_made	to	keep	track	of	all	moves	in	the	game	so
far;	we’ll	use	it	later	in	best_move().	We	open	the	simulated	Connect	Four	game
data	and	save	it	in	a	list	gamedata.

In	best_move(),	we	make	sure	the	first	move	is	always	to	place	a	disc	in
column	4,	as	that	gives	the	computer	a	starting	advantage	1.	We	check	if	only
one	move	is	left	and,	if	so,	just	take	it	as	the	next	best	move.	Otherwise,	we
check	all	simulated	games	with	the	same	history	as	the	current	game	and	see
which	next	move	will	be	most	favorable	to	the	red	player.	We	assign	that	move
as	the	best	move.	I’ll	explain	how	we	do	that	in	detail	in	ml_move.py,	using	a
concrete	example.

At	2,	we	define	computer_move().	When	it’s	the	computer’s	turn	to	play,	it
calls	best_move()	to	generate	a	move.	The	computer	makes	the	move,	and	we
add	that	move	to	the	list	moves_made	to	track	the	game	history.

We	set	the	computer	to	make	the	first	move	3.	After	that,	the	player	clicks	to
make	their	move	4.	The	human	player’s	move	is	also	added	to	moves_made.	The
computer	will	move	after	you	if	the	game	isn’t	over.

Run	conn_ml.py	and	play	the	game	a	few	times.	You	might	be	surprised	to
find	that	it’s	relatively	easy	to	win.	The	machine-learning	strategy	is	not	nearly
as	effective	as	our	three-steps	method.	We’ll	look	into	why	later	in	the	chapter.

TRY	IT	OUT

Run	conn_ml.py	and	play	five	games	against	the	computer.	See	how	many	games	you	can
win.

Test	the	Effectiveness	of	the	Two	Strategies
Next,	we	want	to	measure	how	intelligent	the	two	strategies	are.	We’ll	simulate
1,000	games	and	record	the	outcomes.	In	each	game,	the	intelligent	computer
version	will	play	against	a	simple	computer	player	that	selects	random	moves.
We’ll	see	how	many	times	the	intelligent	player	wins	or	ties	the	game.

The	Think-Three-Steps-Ahead	Strategy

We’ll	start	with	the	three-steps	version.	The	script	outcome_conn_think.py,
shown	in	Listing	13-7,	has	our	two	computer	players	play	1,000	times,	then
prints	out	the	number	of	winning,	tying,	and	losing	games.

import	pickle

from	random	import	choice

from	copy	import	deepcopy

#	Define	the	simulate()	function	to	play	a	complete	game

1	def	simulate():

				occupied=[list(),list(),list(),list(),list(),list(),list()]

				validinputs=[1,2,3,4,5,6,7]

--snip--

				def	win_game(num,	color,	lst):

								win=False

--snip--

				def	best_move():

								#	Take	column	4	in	the	first	move

								if	len(occupied[3])==0:

												return	4

--snip--

				#	The	red	player	takes	the	first	move

				turn="red"

				#	Keep	track	of	all	intermediate	moves

				moves_made=[]

		2	winlose=[0]

				#	Play	a	maximum	of	42	steps	(21	rounds)

				for	i	in	range(21):

								#	The	player	selects	the	best	move

						3	col=best_move()

								if	col==None:

												col=choice(validinputs)

								moves_made.append(col)

--snip--

								#	The	other	player	randomly	selects	a	move

								col=choice(validinputs)

								moves_made.append(col)

--snip--

				#	Record	both	game	outcome	and	intermediate	steps	

		4	return	winlose+moves_made

#	Repeat	the	game	1000	times	and	record	all	game	outcomes

results=[]								

5	for	x	in	range(1000):

				result=simulate()

				results.append(result)				

with	open('outcome_conn_think.pickle',	'wb')	as	fp:

				pickle.dump(results,fp)

with	open('outcome_conn_think.pickle',	'rb')	as	fp:

				mylist=pickle.load(fp)				

winlose=[x[0]	for	x	in	mylist]

#	Print	out	the	number	of	winning	games

		print("the	number	of	winning	games	is",	winlose.count(1))

#	Print	out	the	number	of	tying	games

print("the	number	of	tying	games	is",	winlose.count(0))

#	Print	out	the	number	of	losing	games

print("the	number	of	losing	games	is",	winlose.count(-1))

Listing	13-7:	Test	the	effectiveness	of	the	think-three-steps-ahead	strategy.

At	1,	we	define	simulate(),	which	pits	the	intelligent	computer	(the	red
player)	using	the	think-three-steps-ahead	strategy	against	a	computer	player	that
selects	random	moves.

The	win_game()	and	best_move()	functions	are	the	same	as	those	defined	in
conn_think.py.	We	use	the	list	winlose	to	record	the	game	outcomes	2:	1	if	the
red	player	wins,	-1	if	the	yellow	player	wins,	and	0	if	it’s	a	tie.

Once	the	game	starts,	the	red	player	calls	best_move()	to	obtain	a	move	3,
while	the	yellow	player	randomly	selects	a	move	4.

At	5,	we	call	simulate()	1,000	times	and	record	the	outcome	of	all	games.
We	then	print	out	the	number	of	winning,	tying,	and	losing	games,	summing	the
count	of	1,	-1,	and	0	to	make	it	easier	to	read.	Here’s	an	example	of	the	output:

the	number	of	winning	games	is	995

the	number	of	tying	games	is	0

the	number	of	losing	games	is	5

Out	of	all	the	games,	the	intelligent	player	with	the	think-three-steps-ahead
strategy	has	won	995	times,	never	tied,	and	lost	5	times.

TRY	IT	OUT

Rerun	outcome_conn_think.py	a	few	times	to	see	how	many	times	the	“intelligent”	computer
wins.

The	Machine-Learning	Strategy
Now	we’ll	test	the	machine-learning	strategy	in	the	same	way.	Download
outcome_conn_ml.py	and	save	it	in	your	chapter	folder.	This	is	similar	to
outcome_conn_think.py,	so	I’ll	just	highlight	the	differences	here:

--snip--

				#	Obtain	gamedata

				with	open('conn_simulates.pickle',	'rb')	as	fp:

								gamedata=pickle.load(fp)

#	Define	the	best_move()	function	based	on	the	machine-learning	

strategy

				def	best_move():

								#	Take	column	4	in	the	first	move

								if	len(occupied[3])==0:

												return	4

--snip--

with	open('outcome_conn_ml.pickle',	'wb')	as	fp:

				pickle.dump(results,fp)

with	open('outcome_conn_ml.pickle',	'rb')	as	fp:

				mylist=pickle.load(fp)				

--snip--

First,	we	obtain	the	simulated	game	outcome	data	that	we’ve	generated	from
conn_simulation.py.	Second,	we	base	the	definition	of	best_move()	on	the
machine-learning	strategy	instead	of	the	three-steps	strategy.

WARNING

The	script	outcome_conn_ml.py	may	take	a	long	time	(up	to	a	couple	of
hours)	to	run,	depending	on	the	speed	of	your	computer.	If	you	aren’t
sure	about	your	computer’s	speed,	change	the	number	of	games	from
1,000	to	100	and	run	the	script	first.

We	call	simulate()	1,000	times	and	record	the	outcomes,	printing	them	as
before.	Here’s	an	example	output:

the	number	of	winning	games	is	882

the	number	of	tying	games	is	0

the	number	of	losing	games	is	118	

Out	of	all	the	games,	the	computer	has	won	882	times,	never	tied,	and	lost	118
times—it	did	significantly	worse	than	with	the	three-steps	strategy.	Let’s	look	at
why.

Why	Doesn’t	the	Machine-Learning	Strategy	Work	Well	in
Connect	Four?
The	machine-learning	strategy	is	less	effective	in	our	game	mainly	because	so
many	moves	are	available	in	a	Connect	Four	game:	a	maximum	of	42.	That
means,	exponentially,	that	a	very	large	number	of	possible	game	outcomes	exist.
We	simulated	a	million	games,	which	sounds	like	a	lot,	but	when	the	data	is
spread	among	many	game	outcomes,	it’s	inevitable	that	some	game	outcomes
will	not	be	in	the	simulated	data.	As	a	result,	it’s	impossible	to	find	a	best
strategy	for	many	of	the	game	histories.

As	an	example,	we’ll	test	the	machine-learning	strategy	with	one	particular
game	history.	Assume	that	the	red	and	yellow	players	have	both	made	three
moves	and	next	it’s	the	red	player’s	turn.	The	game	board	at	this	stage	is	as
shown	in	Figure	13-5.

Figure	13-5:	One	game	simulation

We’ll	simulate	this	game	setup	in	code	to	see	how	our	machine-learning
strategy	decides	which	move	to	make	next.	Enter	ml_move.py,	shown	in	Listing
13-8.

import	pickle

		validinputs=[1,2,3,4,5,6,7]

#	A	game	history

		moves_made=[4,5,4,5,4,5]

#	The	game	board

occupied=[list(),list(),list(),

												['red','red','red'],

												['yellow','yellow','yellow'],

												list(),list()]

#	Obtain	gamedata

with	open('conn_simulates.pickle',	'rb')	as	fp:

				gamedata=pickle.load(fp)

1	simu=[]

for	y	in	gamedata:

			if	y[1:len(moves_made)+1]==moves_made:

							simu.append(y)

#	Now	we	look	at	the	next	move	

outcomes={x:[]	for	x	in	validinputs}	

#	We	collect	all	the	outcomes	for	each	next	move

for	y	in	simu:

			outcomes[y[len(moves_made)+1]].append(y[0])

2	print(outcomes)	

#	Set	the	initial	value	of	bestoutcome

bestoutcome=-2;

#	Randomly	select	a	move	to	be	best_move

best_move=validinputs[0]

#	Iterate	through	all	possible	next	moves	

3	for	move	in	validinputs:

				if	len(outcomes[move])>0:

								outcome=sum(outcomes[move])/len(outcomes[move])

								print\

								(f'when	the	next	move	is	{move},	the	average	outcome	is	

{outcome}')

								#	If	the	average	outcome	from	that	move	beats	the	current	

best	move

								if	outcome>bestoutcome:

												#	Update	the	best	outcome

												bestoutcome=outcome

												#	Update	the	best	move

												best_move=move

4	print(f'the	best	next	move	is	{best_move}')

Listing	13-8:	Search	for	the	best	machine	learning	strategy	move.

We	import	pickle,	which	enables	us	to	work	with	datasets	saved	in	the	pickle
format.	We	open	the	simulation	data	file,	conn_simulates.pickle,	which	was
created	earlier	in	conn_simulation.py.	The	data	is	saved	in	the	gamedata	list.

At	this	point,	the	red	player	is	able	to	place	a	disc	in	any	of	the	seven	columns
in	the	next	move,	so	we	have	all	seven	values	in	validinputs.	We	save	the	six
moves	already	made	in	Figure	13-4,	[4,	5,	4,	5,	4,	5],	in	the	list
moves_made.	The	list	of	lists	occupied	keeps	track	of	the	disc	positions	currently
on	the	game	board.

We	check	the	million	simulated	games	data	to	see	if	any	of	those	games	match
the	game	history	of	the	current	game.	If	yes,	we	put	all	the	historical	games	that
match	in	the	list	simu	1.	We	then	focus	on	the	seventh	move	in	all	those	games.
We	look	at	the	outcomes	(win,	lose,	or	tie)	of	all	games	associated	with	each	of

the	seven	possible	moves,	1	through	7,	and	put	them	in	a	dictionary	outcomes.

We	then	print	out	the	content	of	outcomes	2:

{1:	[],	2:	[-1,	1],	3:	[1],	4:	[1],	5:	[-1],	6:	[-1,	-1,	1],	7:	

[-1]}

WARNING

The	outcome	will	be	different	when	you	run	ml_move.py	because	the
simulated	data	is	generated	randomly.

As	you	can	see,	nine	games	have	the	same	game	history:	none	of	which
placed	the	next	disc	in	column	1,	two	that	used	column	2	for	the	next	move,	one
that	used	column	3,	and	so	on.	The	values	-1,	0,	and	1	inside	the	square	brackets
indicate	that	the	red	player	loses,	ties,	and	wins	the	game,	respectively.

To	help	us	compare	which	of	the	seven	moves	leads	to	the	best	outcome	for
the	red	player,	we	calculate	the	average	outcome	for	each	move	3.	If	a	move
leads	to	wins	100	percent	of	the	time,	the	average	outcome	is	1;	if	a	move	leads
to	50	percent	wins	and	50	percent	losses,	the	average	outcome	is	0;	if	a	move
leads	to	a	loss	100	percent	of	the	time,	the	average	is	-1.

We	print	the	average	outcomes	(we	don’t	have	results	for	move	1	because	no
simulated	game	in	simu	used	this	move):

when	the	next	move	is	2,	the	average	outcome	is	0.0

when	the	next	move	is	3,	the	average	outcome	is	1.0

when	the	next	move	is	4,	the	average	outcome	is	1.0

when	the	next	move	is	5,	the	average	outcome	is	-1.0

when	the	next	move	is	6,	the	average	outcome	is	

-0.3333333333333333

when	the	next	move	is	7,	the	average	outcome	is	-1.0

Both	moves	3	and	4	lead	to	an	average	outcome	of	1.	The	script	prints	out	the
first	best	move,	which	is	3	in	this	case	4:

the	best	next	move	is	3

However,	when	we	look	at	this	move	in	the	game	(Figure	13-6),	we	can	see	it

clearly	isn’t	the	best	move	we	could	have	made.

Figure	13-6:	The	machine-learning	computer	makes	a	mistake.

As	you	can	see,	the	problem	with	the	machine-learning	strategy	is	that	we
don’t	have	enough	simulated	games	that	match	our	game	history.

You	may	wonder	whether	we	can	just	increase	the	number	of	simulated	games
to	solve	the	problem.	The	answer	is	yes	and	no.	Increasing	the	number	of
simulated	games	will	make	the	strategy	more	intelligent,	but	it	will	also	increase
the	data	size	enough	to	slow	the	response	of	the	machine-learning	script.	Thus,
the	player	will	have	to	wait	a	long	time	for	the	computer	to	make	a	move.	This	is
the	trade-off	when	using	machine	learning.

Let’s	test	this	by	increasing	the	size	of	the	simulated	games	to	10	million.
Generating	this	data	takes	several	hours.	We	rerun	ml_move.py	with	the	larger
dataset	and	get	the	following	output:

{1:	[-1,	1,	-1,	1,	-1,	-1,	1,	1,	-1,	-1,	-1,	1,	1,	-1,	1],	

2:	[1,	1,	-1,	1,	1,	1,	1,	-1,	-1,	1,	1,	-1,	1,	1],	

3:	[-1,	-1,	-1,	-1,	-1,	1,	-1,	-1,	-1,	-1,	-1],	

4:	[1,	1,	1,	1,	1,	1,	1,	1,	1],	

5:	[1,	1,	1,	1,	1,	1,	-1],	

6:	[-1,	-1,	1,	-1,	-1,	1,	1,	-1,	1,	1,	-1,	1,	-1],	

7:	[1,	-1,	1,	-1,	-1,	-1,	1,	-1,	-1,	1]}

when	the	next	move	is	1,	the	average	outcome	is	

-0.06666666666666667

when	the	next	move	is	2,	the	average	outcome	is	

0.42857142857142855

when	the	next	move	is	3,	the	average	outcome	is	

-0.8181818181818182

when	the	next	move	is	4,	the	average	outcome	is	1.0

when	the	next	move	is	5,	the	average	outcome	is	

0.7142857142857143

when	the	next	move	is	6,	the	average	outcome	is	

-0.07692307692307693

when	the	next	move	is	7,	the	average	outcome	is	-0.2

the	best	next	move	is	4

Now	that	we	have	much	more	data	to	base	our	decision	on,	the	machine-
learning	strategy	correctly	recommends	column	4,	resulting	in	Figure	13-7.

Figure	13-7:	With	10	million	simulated	games,	the	strategy	makes	the	correct	move.

TRY	IT	OUT

Change	the	number	of	the	simulated	games	in	conn_simulation.py	to	five	million.	Play	the
game	using	conn_ml.py	and	compare	the	response	time	and	the	competence	of	the
machine-learning	strategy.	Finally,	run	outcome_conn_ml.py	using	the	new	data	and	see	how
often	the	intelligent	player	wins.	(Warning:	the	process	may	be	time-consuming.)

Voice-Controlled	Intelligent	Connect	Four
Games
Let’s	wrap	up	this	chapter	by	adding	speech	recognition	and	text-to-speech
features	to	the	intelligent	Connect	Four	games.

A	Voice-Controlled	Game	That	Thinks	Ahead
We’ll	mesh	together	two	scripts,	conn_think.py	and	conn_hs.py,	into
conn_think_hs.py.	Download	this	file	from	the	book’s	resources	and	save	it	in
your	chapter	folder.	The	main	differences	are	shown	in	Listing	13-9.

--snip--

1	def	best_move():

				#	Take	column	4	in	the	first	move

				if	len(occupied[3])==0:

								return	4

--snip--

#	Define	the	computer_move()	function

2	def	computer_move():

				global	turn,	rounds,	validinputs

				#	Choose	the	best	move

				col=best_move()

				if	col==None:

								col=choice(validinputs)

				print_say(f"The	computer	chooses	column	{col}.")

--snip--

				#	Check	if	the	player	has	won

				if	win_game(col,	turn,	occupied)==True:

								#	If	a	player	wins,	invalid	all	moves,	end	the	game

								validinputs=[]

						3	print_say(f"Congrats	player	{turn},	you	won!")

								messagebox.showinfo("End	Game",f"Congrats	player	{turn},	

you	won!")

				#	If	all	cells	are	occupied	and	no	winner,	it's	a	tie

				if	rounds==42:

								print_say("Game	over,	it's	a	tie!")

								messagebox.showinfo("Tie	Game","Game	over,	it's	a	tie!")

--snip--

#	Computer	moves	first

4	computer_move()

#	Add	a	dictionary	of	words	to	replace

to_replace	=	{'number	':'',	'cell	':'',	'column	':'',

														'one':'1',	'two':'2',	'three':'3',

														'four':'4',	'for':'4',	'five':'5',

														'six':'6',	'seven':'7'}

#	Start	a	while	loop	to	take	voice	inputs

5	while	len(validinputs)>0:

				#	Ask	for	your	move

				print_say(f"Player	{turn},	what's	your	move?")

				#	Capture	your	voice	input

				inp=	voice_to_text().lower()

				print_say(f"You	said	{inp}.")

				for	x	in	list(to_replace.keys()):			

								inp	=	inp.replace(x,	to_replace[x])

				try:

								col=int(inp)

				except:

								print_say("Sorry,	that's	an	invalid	input!")

								continue

				#	If	col	is	not	a	valid	move,	try	again

		6	if	col	not	in	validinputs:

								print_say("Sorry,	that's	an	invalid	move!")	

								continue

				#	If	your	voice	input	is	a	valid	column	number,	play	the	move

				else:

								#	Calculate	the	lowest	available	row	number	in	that	

column

								row=len(occupied[col-1])+1

--snip--

												print_say(f"Congrats	player	{turn},	you	won!")

--snip--

												print_say("Game	over,	it's	a	tie!")

--snip--

								if	len(validinputs)>0:

												computer_move()

--snip--

Listing	13-9:	A	voice-controlled	Connect	Four	game	with	the	three-steps
strategy

The	function	best_move()	is	the	same	as	in	the	script	conn_think.py	1.	We
define	computer_move()	2,	which	uses	best_move()	to	choose	a	move	and
speaks	aloud	the	selected	column.	If	the	computer’s	move	wins	or	ties	the	game,
the	script	also	announces	it	3.

The	computer	then	makes	the	first	move	of	the	game	4,	and	it	starts	a	while
loop	that	keeps	running	as	long	as	the	list	validinputs	isn’t	empty	5.	At	each
iteration,	the	script	captures	your	voice	input,	which	should	be	the	number	of	the
column	you	want	to	drop	a	disc	in.	You	can	say	“number	five,”	“column	five,”	or
“5.”	It	then	converts	the	voice	command	to	an	integer	number	to	match	the
format	in	validinputs	so	it	can	compare	your	input	to	the	list.	If	you	said
something	that	isn’t	convertible	to	an	integer,	the	script	will	say,	“Sorry,	that’s	an
invalid	input.”

If	you’ve	given	an	invalid	move	6,	the	script	will	say,	“Sorry,	that’s	an
invalid	move.”	If	your	move	is	valid,	the	script	places	the	disc	on	the	game
board.	In	the	process,	it	will	check	whether	you’ve	won	or	tied	the	game	and,	if
so,	will	announce	the	result	aloud.	If	the	game	is	not	yet	over,	the	computer
makes	a	move.

Run	the	script	and	play	the	voice-controlled	game	with	the	computer.	You’ll
notice	that	the	game	is	more	challenging	and	more	interesting	to	play.

A	Voice-Controlled	Game	Using	Machine	Learning
We’ll	mesh	together	two	scripts	we	created	before,	conn_ml.py	and	conn_hs.py,
into	conn_ml_hs.py.	Download	the	file	from	the	book’s	resources	and	save	it	in
your	chapter	folder.	Listing	13-10	shows	the	main	differences.

--snip--

import	pickle

--snip--

#	A	history	of	moves	made

moves_made=[]

#	Obtain	gamedata

with	open('conn_simulates.pickle',	'rb')	as	fp:

				gamedata=pickle.load(fp)

#	Define	the	best_move()	function	based	on	machine	learning

def	best_move():

				#	Take	column	4	in	the	first	move

				if	len(occupied[3])==0:

								return	4

--snip--

#	Define	the	computer_move()	function	

def	computer_move():

				global	turn,	rounds,	validinputs

				#	Choose	the	best	move

				move=best_move()

				if	move==None:

								move=choice(validinputs)

				print_say(f"The	computer	decides	to	occupy	cell	{move}.")

--snip--

				moves_made.append(move)

--snip--

#	Computer	moves	first

computer_move()

#	Start	an	infinite	loop	to	take	voice	inputs

while	len(validinputs)>0:

				#	Ask	for	your	move

				print_say(f"Player	{turn},	what's	your	move?")

				#	Capture	your	voice	input

				inp=	voice_to_text().lower()

--snip--

								moves_made.append(inp)

--snip--

								#	Computer	moves

								if	len(validinputs)>0:

												computer_move()

--snip--

Listing	13-10:	A	voice-controlled	Connect	Four	game	using	the	machine-
learning	strategy

This	works	in	the	same	way	as	the	voice-controlled	three-steps	version.	Run
the	script	and	play	a	game.	You	should	find	the	game	interesting	but	easier	to
beat	than	the	three-steps	strategy.

Summary
In	this	chapter,	you	created	intelligent,	voice-controlled	graphical	Connect	Four
games	by	using	two	methods:	the	think-three-steps-ahead	strategy	and	the
machine-learning	strategy.	This	taught	some	important	reasoning	skills—how	do

we	make	a	script	intelligent?—as	well	as	some	basic	machine-learning	skills.

You	learned	to	generalize	these	two	strategies	and	apply	them	to	specific
games.	You	can	apply	these	skills	to	create	your	own	intelligent	voice-controlled
games.

End-of-Chapter	Exercises
1.	 Modify	conn_think1.py	so	that	the	human	player	moves	first	and	the

computer	moves	second.

2.	 Mesh	together	ttt_click.py	from	Chapter	10	and	conn_think1.py	to	create	a
mouse-click	version	of	the	tic-tac-toe	game	in	which	the	computer	thinks	one
step	ahead.

3.	 Create	a	mouse-click	version	of	the	tic-tac-toe	game	in	which	the	computer
thinks	two	steps	ahead,	based	on	ttt_click.py	and	conn_think2.py.

4.	 In	best_move(),	defined	in	conn_think.py,	if	the	list	winner	has	eight
elements	[7,	7,	4,	5,	6,	6,	6,	6],	what’s	the	value	of	cnt,	maxcnt,	and
cnt[maxcnt],	respectively?

5.	 Design	a	mouse-click	version	of	the	tic-tac-toe	game	in	which	the	computer
thinks	three	steps	ahead,	based	on	ttt_click.py	and	conn_think.py.

6.	 Simulate	a	million	tic-tac-toe	games	and	save	the	game	outcome	and
intermediate	steps	as	ttt_simulates.pickle.	Then	create	a	mouse-click	version
of	tic-tac-toe	in	which	the	computer	uses	the	machine-learning	strategy,
similar	to	what	we’ve	done	in	conn_simulation.py	and	conn_ml.py.

7.	 Modify	outcome_conn_think.py	and	outcome_conn_ml.py	to	test	the
effectiveness	of	the	three-steps	strategy	and	the	machine-learning	strategy	in
the	tic-tac-toe	games	you	just	created.

8.	 After	running	conn_simulation.py,	we	printed	out	10	observations	from	the
dataset	conn_simulates.pickle,	as	shown	in	Listing	13-5.	The	10th
observation	is	[-1,	1,	4,	1,	4,	1,	2,	4,	5,	6,	6,	6,	3].	Who	has
won	the	10th	game?	Are	the	four	discs	connected	vertically,	horizontally,	or
diagonally?

PART	IV
GOING	FURTHER

14
FINANCIAL	APPLICATIONS

The	speech	recognition	and	text-to-speech
techniques	can	be	applied	to	many	aspects
of	life.	In	this	chapter,	we’ll	focus	on

tracking	the	financial	markets,	but	the	techniques	you
learn	here	can	be	easily	generalized	and	applied	to	your
own	area	of	interest,	whatever	that	may	be.
You’ll	build	three	projects	in	this	chapter:	an	app	that	reports	the	up-to-date

stock	price	of	any	publicly	traded	company;	a	script	that	builds	visualizations	of
stock	prices;	and	an	app	that	uses	recent	daily	stock	prices	to	calculate	returns,
run	regressions,	and	perform	detailed	analyses.

As	always,	all	scripts	are	available	through	the	book’s	resources	page	at
https://www.nostarch.com/make-python-talk/.	Start	by	creating	the	folder
/mpt/ch14/	for	this	chapter.

NEW	SKILLS

Retrieving	real-time	and	daily	stock	price	information

Learning	about	JSON	data,	including	how	to	reformat	it	into	a	readable	form	and	import	it
to	Python

Automating	the	process	of	obtaining	a	stock	ticker	symbol	based	on	the	company	name

Visualizing	financial	data	with	plots	and	charts

Performing	regression	analyses	and	interpreting	results

https://www.nostarch.com/make-python-talk/

Python,	What’s	the	Facebook	Stock	Price?
In	this	project,	you’ll	use	the	yahoo_fin	package	to	obtain	real-time	price
information	based	on	the	ticker	symbol	of	a	stock.	A	ticker	symbol	is	a	sequence
of	characters,	or	code,	used	to	uniquely	identify	a	stock.	Most	people	will	not
know	a	company’s	associated	ticker	symbol.

This	provides	the	opportunity	to	work	backward.	You’ll	learn	to	scrape	the
web	to	get	a	stock’s	ticker	symbol	from	the	company	name.	When	you	enter	the
name	of	a	firm	into	the	script,	Python	will	tell	you	the	ticker	symbol	of	the	firm’s
stock.	Finally,	you’ll	add	the	text-to-speech	and	speech	recognition	features.

Obtain	the	Latest	Stock	Price
The	yahoo_fin	package	lets	you	obtain	the	latest	stock	price	information	from
Yahoo!	Finance.	This	package	isn’t	in	the	Python	standard	library,	so	you	need	to
pip	install	it	first.

Open	your	Anaconda	prompt	(in	Windows)	or	a	terminal	(in	Mac	or	Linux),
activate	the	virtual	environment	chatting,	and	run	the	following	command	(note
the	underscore	in	the	middle	of	the	package	name):

pip	install	yahoo_fin

Next,	open	your	Spyder	editor	and	save	Listing	14-1	as	live_price.py	in	your
chapter	folder.	To	use	this	script,	you	need	to	find	the	ticker	symbol	for	the	stock
you’re	interested	in	beforehand.

from	yahoo_fin	import	stock_info	as	si

#	Start	an	infinite	loop

1	while	True:

				#	Obtain	ticker	symbol	from	you

				ticker	=	input("Which	stock	(ticker	symbol)	are	you	looking	

for?\n")

				#	If	you	want	to	stop,	type	in	"done"

		2	if	ticker	==	"done":

								break

				#	Otherwise,	type	in	a	stock	ticker	symbol

				else:

								#	Obtain	stock	price	from	Yahoo!

						3	price	=	si.get_live_price(ticker)

								#	Print	out	the	stock	price

								print(f"The	stock	price	for	{ticker}	is	{price}.")

Listing	14-1:	Retrieving	real-time	stock	prices

We	import	the	stock_info	module	from	the	yahoo_fin	package	under	the	alias
si.	We	then	put	the	script	in	an	infinite	loop	1	to	continuously	take	your	written
input	requesting	stock	ticker	symbols.	Whenever	you	want	to	stop	the	script,	you
can	enter	done	2.	Otherwise,	the	script	automatically	continues	to	obtain	the
latest	stock	price	information	for	your	requested	company	from	Yahoo!	Finance
3.	Finally,	the	script	prints	out	the	stock	price	information.

Here’s	the	output	from	an	exchange	with	the	script,	with	user	input	in	bold:

Which	stock	(ticker	symbol)	are	you	looking	for?

MSFT

The	stock	price	for	MSFT	is	183.25.

Which	stock	(ticker	symbol)	are	you	looking	for?

AAPL

The	stock	price	for	AAPL	is	317.94000244140625.

Which	stock	(ticker	symbol)	are	you	looking	for?

done

As	you	can	see,	I	entered	ticker	symbols	for	Microsoft	and	Apple	(MSFT	and
AAPL,	respectively),	and	the	script	returned	their	latest	prices.

Notice	that	the	price	of	the	Apple	stock	has	many	digits	after	the	decimal.
We’ll	adjust	the	code	a	little	later	to	show	only	two	digits	after	the	decimal	for
all	stock	prices.

TRY	IT	OUT

Run	live_price.py	and	find	the	stock	prices	for	Amazon	(AMZN)	and	Tesla	(TSLA).	Then	go
to	the	website	https://finance.yahoo.com/	to	check	if	the	prices	are	close	to	your	output.

For	the	script	to	work,	you	need	the	company’s	stock	ticker	symbol,	such	as
MSFT	or	AAPL.	You	may	wonder,	what	if	I	don’t	know	the	ticker	symbols	of

https://finance.yahoo.com/

the	stocks	that	I’m	interested	in?	Can	Python	find	it	if	I	know	only	the	company
name,	such	as	Microsoft	or	Apple?	The	answer	is	yes,	and	this	is	when	the	web-
scraping	skills	you	learned	in	Chapter	6	become	handy.

Find	Ticker	Symbols
Many	times,	you’ll	know	the	name	of	the	company	you’re	interested	in	but	not
its	ticker	symbol.	This	script	will	find	the	ticker	symbol	when	you	enter	the
name	of	the	company.	This	is	important	because	our	end	goal	is	to	create	voice-
controlled	applications	in	the	financial	market.	It’s	relatively	difficult	for	the
Python	script	to	pick	up	the	ticker	symbol	via	voice	commands,	but	picking	up
the	company	name	is	much	easier.

We	need	to	first	find	a	website	that	can	reliably	provide	a	company’s	ticker
symbol.	We’ll	use	Yahoo!	Finance	and	query	the	site	using	the	URL
https://query1.finance.yahoo.com/v1/finance/search?q=	followed	by	the	name	of
the	company	you	want	to	query.	For	example,	if	you	put	Bank	of	America	at	the
end,	you’ll	get	a	set	of	Python-friendly	data	results,	as	shown	in	Figure	14-1.

Figure	14-1:	Results	when	you	search	for	the	ticker	symbol	for	Bank	of	America

This	data	is	formatted	in	JSON,	short	for	JavaScript	Object	Notation.	This	file
format	is	used	for	browser-server	communication	that	uses	human-readable	text
to	store	and	transmit	data	objects.	JSON	was	derived	from	JavaScript,	but	it’s
now	a	language-independent	data	format	that’s	used	by	many	programming

https://query1.finance.yahoo.com/v1/finance/search?q=

languages,	include	Python.

To	make	the	JSON	data	easier	to	read,	we’ll	use	the	online	JSON	data
formatter	at	https://jsonformatter.curiousconcept.com/.	Open	the	URL	and	you’ll
see	a	screen	similar	to	Figure	14-2.

Figure	14-2:	A	website	to	format	JSON	data

Paste	the	data	from	Figure	14-1	into	the	designated	space	and	click	Process.
The	formatter	will	convert	the	data	into	a	much	more	readable	format,	shown	in
Listing	14-2.

{

				"explains":[

],

				"count":18,

				"quotes":[

				{

								"exchange":"NYQ",

								"shortname":"Bank	of	America	Corporation",

								"quoteType":"EQUITY",

						1	"symbol":"BAC",

								"index":"quotes",

								"score":208707.0,

								"typeDisp":"Equity",

								"longname":"Bank	of	America	Corporation",

								"isYahooFinance":true

https://jsonformatter.curiousconcept.com/

						},

							{

								"exchange":"NYQ",

								"shortname":"Bank	of	America	Corporation	Non",

								"quoteType":"EQUITY",

								"symbol":"BAC-PL",

								"index":"quotes",

								"score":20322.0,

								"typeDisp":"Equity",

								"longname":"Bank	of	America	Corporation",

								"isYahooFinance":true

						},

						{

								"exchange":"NYQ",

								"shortname":"Bank	of	America	Corporation	Dep",

								"quoteType":"EQUITY",

								"symbol":"BAC-PC",

								"index":"quotes",

								"score":20183.0,

								"typeDisp":"Equity",

								"longname":"Bank	of	America	Corporation",

								"isYahooFinance":true

						},

--snip--

}

Listing	14-2:	The	formatted	JSON	data	for	the	ticker	symbol	search

The	dataset	is	a	large	dictionary	of	several	elements	with	the	key	values
explains,	count,	quotes,	and	so	on.	The	value	for	the	quotes	key	is	a	list	of
several	dictionaries.	The	first	dictionary	contains	the	keys	exchange,	shortname,
quoteType—and	importantly,	symbol,	which	contains	the	value	BAC,	the	ticker
symbol	we	need	1.

Next,	we	use	a	Python	script	to	extract	the	ticker	symbol	based	on	the
preceding	pattern.	The	script	get_ticker_symbol.py,	shown	in	Listing	14-3,
accomplishes	that.

import	requests

#	Start	an	infinite	loop

1	while	True:

				#	Obtain	company	name	from	you

				firm	=	input("Which	company's	ticker	symbol	are	you	looking	

for?\n")

				#	If	you	want	to	stop,	type	in	"done"

				if	firm	==	"done":

								break

				#	Otherwise,	type	in	a	company	name

		2	else:

						3	try:

												#	Extract	the	source	code	from	the	website

												url	=	

'https://query1.finance.yahoo.com/v1/finance/search?q='+firm

												response	=	requests.get(url)

												#	Read	the	JSON	data

												response_json	=	response.json()

												#	Obtain	the	value	corresponding	to	"quotes"

										4	quotes	=	response_json['quotes']

												#	Get	the	ticker	symbol

												ticker	=	quotes[0]['symbol']

												#	Print	out	the	ticker

												print(f"The	ticker	symbol	for	{firm}	is	{ticker}.")

								except:

												print("Sorry,	not	a	valid	entry!")

								continue

Listing	14-3:	Finding	a	stock’s	ticker	symbol	based	on	the	company	name

We	import	the	requests	module,	which	allows	Python	to	send	HyperText
Transfer	Protocol	(HTTP)	requests.	At	1,	we	start	an	infinite	loop	that	asks	for
your	written	input	in	each	iteration.	To	exit	the	loop,	enter	done.	Otherwise,	you
enter	in	the	company	name	2.	We	use	exception	handling	to	prevent	a	crash	3.

We	go	into	the	JSON	data	and	extract	the	list	corresponding	to	the	key	quotes
4.	We	then	go	to	the	first	element	and	look	for	the	value	corresponding	to	the
key	symbol.	The	script	prints	out	the	ticker	symbol	at	the	IPython	console.	If
there	are	no	results,	the	script	will	print	Sorry,	not	a	valid	entry!.

Run	the	script	a	few	times	and	search	for	several	companies	to	check	that	it
works.	The	following	output	is	one	interaction	with	the	script:

Which	company's	ticker	symbol	are	you	looking	for?

ford	motor

The	ticker	symbol	for	ford	motor	is	F.

Which	company's	ticker	symbol	are	you	looking	for?

walt	disney	company

The	ticker	symbol	for	walt	disney	company	is	DIS.

Which	company's	ticker	symbol	are	you	looking	for?

apple

The	ticker	symbol	for	apple	is	AAPL.

Which	company's	ticker	symbol	are	you	looking	for?

done

As	you	can	see,	the	script	works	for	companies	with	one-word	names,	like
Apple,	as	well	as	longer	names,	such	as	Walt	Disney	Company.

TRY	IT	OUT

Use	get_ticker_symbol.py	to	find	the	ticker	symbols	for	General	Motors	and	Procter	&
Gamble.

Retrieve	Stock	Prices	via	Voice
Now	we’ll	mesh	together	the	scripts	live_price.py	and	get_ticker_symbol.py	and
add	in	the	speech	recognition	and	text-to-speech	features.	Enter	Listing	14-4	in	a
Spyder	editor	and	save	it	as	live_price_hs.py	in	your	chapter	folder,	or	download
the	script	from	the	book’s	resources.

import	requests

from	yahoo_fin	import	stock_info	as	si

from	mptpkg	import	voice_to_text,	print_say

#	Start	an	infinite	loop

1	while	True:

				#	Obtain	company	name	from	you

				print_say("Which	company's	stock	price	do	you	want	to	know?")

				firm	=	voice_to_text()

				print_say(f"You	just	said	{firm}.")

				#	If	you	want	to	stop,	type	in	"stop	listening"

				if	firm	==	"stop	listening":

								print_say("OK,	goodbye	then!")

								break

				#	Otherwise,	say	a	company	name

		2	else:

						try:

												#	Extract	the	source	code	from	the	website

												url	=	

'https://query1.finance.yahoo.com/v1/finance/search?q='+firm

												response	=	requests.get(url)

												#	Read	the	JSON	data

												response_json	=	response.json()

												#	Obtain	the	value	corresponding	to	"quotes"

												quotes	=	response_json['quotes']

												#	Get	the	ticker	symbol

												ticker	=	quotes[0]['symbol']

												#	Obtain	live	stock	price	from	Yahoo!

										3	price	=	round(float(si.get_live_price(ticker)),2)

												#	Speak	the	stock	price

												print_say(f"The	stock	price	for	{firm}	is	{price}.")									

								#	In	case	the	price	cannot	be	found,	the	script	will	tell	

you

								except:

													print_say("Sorry,	I	cannot	find	what	you	are	looking	

for!")								

								continue

Listing	14-4:	Use	voice	to	retrieve	real-time	stock	price

We	now	import	print_say()	and	voice_to_text()	from	the	local	mptpkg
package	to	add	the	text-to-speech	and	speech	recognition	features.

At	1,	we	start	an	infinite	loop	that	asks	for	your	voice	input.	To	exit	the	loop,
you	say,	“Stop	listening.”	Otherwise,	you	say	a	company	name	2,	and	the	script
searches	for	the	ticker	symbol.	We	use	try	and	except	here	to	prevent	the	script
from	crashing	because	of	a	lack	of	results	from	Yahoo!	Finance.

We	save	the	stock	price	from	Yahoo!	Finance	in	price	3.	Note	that	we	use
round()	to	round	the	stock	price	to	two	digits	after	the	decimal.	The	script	will
speak	the	company’s	stock	price	or,	if	there	are	no	results,	will	say,	“Sorry,	I
cannot	find	what	you	are	looking	for!”

NOTE

While	the	result	from	the	ticker	symbol	search	in	this	script	is	relatively
accurate,	mistakes	do	happen.	Be	sure	to	say	the	company	name	in	a

clear	enough	way	that	the	script	returns	the	correct	ticker	symbol.	For
example,	use	“Ford	Motor”	instead	of	“Ford.”

Here’s	a	sample	interaction:

Which	company's	stock	price	do	you	want	to	know?

You	just	said	JPMorgan	Chase.

The	stock	price	for	JPMorgan	Chase	is	97.31.

Which	company's	stock	price	do	you	want	to	know?

You	just	said	Goldman	Sachs.

The	stock	price	for	Goldman	Sachs	is	196.49.

Which	company's	stock	price	do	you	want	to	know?

You	just	said	stop	listening.

OK,	goodbye	then!	

TRY	IT	OUT

Use	live_price_hs.py	to	find	out	the	latest	stock	price	for	Johnson	&	Johnson	and
McDonald’s.

Voice-Controlled	Data	Visualization
One	efficient	way	to	analyze	data—for	example,	to	find	patterns	in	stock
movements—is	through	data	visualization.	Data	visualization	puts	data	into
visual	contexts	such	as	plots	and	charts	to	make	it	easy	for	human	brains	to
understand.

The	price	you	obtained	in	the	first	project	of	this	chapter	is	the	latest	price	for
the	stock.	That	is,	you	have	one	data	point	for	each	stock	you	query.	However,	in
order	to	learn	more	about	a	stock,	it’s	better	to	obtain	a	number	of	recent	prices
for	the	stock	so	that	you	can	get	a	sense	of	velocity	and	direction.	Is	the	stock
staying	at	about	the	same	value,	rising,	or	falling?	If	the	price	is	changing,	how
rapid	is	this	change?

In	this	project,	you’ll	obtain	recent	daily	stock	price	information	from	Yahoo!
Finance.	You’ll	then	plot	a	graph	to	see	the	price	movements	over	time.	You’ll

also	learn	to	create	candlestick	charts	so	that	you	can	see	intraday	stock
movement	patterns.	With	that	set	up,	we’ll	add	the	speech	recognition	and	text-
to-speech	features.

Create	Stock	Price	Plots
We’ll	use	the	pandas_datareader	module	with	matplotlib	to	create	plots	for
stock	prices	over	the	last	six	months.	First	you’ll	learn	how	to	extract	data,	and
then	you’ll	learn	how	to	create	plots.

Before	we	begin,	you	need	to	install	a	few	third-party	modules.	Go	to	your
Anaconda	prompt	(in	Windows)	or	a	terminal	(in	Mac	or	Linux)	and	activate	the
virtual	chatting	environment.	Then	run	the	following	lines	of	code	one	by	one:

conda	install	pandas	

conda	install	matplotlib	

pip	install	pandas_datareader	

Follow	the	instructions	to	finish	the	installations.	The	pandas_datareader
module	extracts	online	data	from	various	sources	into	a	pandas	DataFrame.
Then	enter	Listing	14-5	in	your	Spyder	editor	and	save	the	script	as	price_plot.py
in	your	chapter	folder.

import	matplotlib.pyplot	as	plt

from	pandas_datareader	import	data	as	pdr

import	matplotlib.dates	as	mdates

#	Set	the	start	and	end	dates

1	start_date	=	"2020-09-01"

end_date	=	"2021-02-28"

#	Choose	stock	ticker	symbol

2	ticker	=	"TSLA"

#	Get	stock	price

3	stock	=	pdr.get_data_yahoo(ticker,	start=start_date,	

end=end_date)

print(stock)

#	Obtain	dates

4	stock['Date']=stock.index.map(mdates.date2num)

#	Choose	figure	size

5	fig	=	plt.figure(dpi=128,	figsize=(10,	6))

#	Format	date	to	place	on	the	x-axis

6	formatter	=	mdates.DateFormatter('%m/%d/%Y')

plt.gca().xaxis.set_major_formatter(formatter)

#	Plot	data

7	plt.plot(stock['Date'],	stock['Adj	Close'],	c='blue')

#	Format	plot

8	plt.title("The	Stock	Price	of	Tesla",	fontsize=16)

plt.xlabel('Date',	fontsize=10)

fig.autofmt_xdate()

plt.ylabel("Price",	fontsize=10)

9	plt.show()

Listing	14-5:	The	script	to	create	a	stock	price	plot

We	import	the	modules,	then	specify	the	start	and	end	dates	of	the	data	we
want	to	extract	1.	These	will	be	hardcoded	for	now;	we’ll	make	the	dates
dynamic	later.	The	dates	should	be	in	the	format	YYYY-MM-DD.	In	this	case,
we’ll	use	the	six-month	period	from	September	1,	2020,	to	February	28,	2021.
We	also	provide	the	ticker	symbol	of	the	stock—in	this	case,	Tesla	with	the
ticker	symbol	TSLA	2.

We	use	get_data_yahoo()	in	the	pandas_datareader	module	to	extract	daily
stock	price	information	and	save	the	data	as	a	pandas	DataFrame	named	stock
3.	The	dataset	looks	like	this:

																		High									Low		...					Volume			Adj	Close

Date																																...																							

2020-09-01		502.489990		470.510010		...			90119400		475.049988

2020-09-02		479.040009		405.119995		...			96176100		447.369995

2020-09-03		431.799988		402.000000		...			87596100		407.000000

2020-09-04		428.000000		372.019989		...		110321900		418.320007

2020-09-08		368.739990		329.880005		...		115465700		330.209991

														

2021-02-22		768.500000		710.200012		...			37269700		714.500000

2021-02-23		713.609985		619.000000		...			66606900		698.840027

2021-02-24		745.000000		694.169983		...			36767000		742.020020

2021-02-25		737.210022		670.580017		...			39023900		682.219971

2021-02-26		706.700012		659.510010		...			41011300		675.500000

[123	rows	x	6	columns]

The	dataset	uses	dates	as	indexes.	The	123	rows	represent	the	123	trading
days	during	the	six-month	period.	The	six	columns	represent	the	following

information	in	each	trading	day:	high	price,	low	price,	open	price,	closing	price,
trading	volume,	and	adjusted	closing	price.

We	then	read	the	timestamp	index	of	the	dataset	as	a	number	and	save	it	as	an
additional	(seventh)	column	4.	This	step	is	necessary	because	the	dataset
doesn’t	recognize	the	index	as	a	separate	variable,	but	we	need	the	date
information	to	use	as	our	x-axis	in	the	charts.	We	then	use	the	figure()	function
in	matplotlib.pyplot	to	specify	the	size	and	resolution	of	the	plot	and	name	the
generated	figure	fig	5.	The	dpi=128	argument	makes	the	output	128	pixels	per
inch.	The	figsize=(10,6)	argument	sets	the	plot	10	inches	wide	and	6	inches
tall.

NOTE

DPI	stands	for	(printer)	dots	per	inch	from	predigital	days.	Nowadays,	it
actually	stands	for	pixels	per	inch,	so	DPI	is	a	bit	of	a	misnomer.

We	use	the	DateFormatter()	method	from	matplotlib.dates	to	specify	the
format	of	the	dates	we	want	to	show	6.	We	do	the	actual	plotting	by	using
plot()	7.	The	first	two	arguments	are	the	variables	to	use	on	the	x-	and	y-axis,
respectively.	We	also	use	a	third	argument	to	specify	the	color.	In	this	case,	we
plot	the	adjusted	closing	price	against	the	date	and	use	blue	as	the	color.

NOTE

The	adjusted	closing	price	is	the	closing	price	adjusted	for	stock	splits
and	cash	dividends.	In	many	cases,	it’s	identical	to	the	unadjusted
closing	price.	When	it	differs,	it	is	a	more	accurate	measure	of	total
returns	to	investors	since	it	takes	into	account	both	dividend	yields	and
capital	gains.

Starting	at	8,	we	put	a	title	on	the	graph	and	label	the	x-	and	y-axis.	We	also
use	autofxt_xdate()	to	show	the	dates	on	the	x-axis	diagonally	to	prevent
overlapping	text.

Finally,	show()	is	called	to	display	the	plot	9.	Figure	14-3	shows	the	output.

Figure	14-3:	Stock	price	plot	for	Tesla	from	September	2020	through	February	2021

We	can	see	the	price	movement	patterns	of	Tesla	over	the	six-month	period.
The	stock	was	at	less	than	$500	per	share	in	early	September	2020	but	shot	up	to
over	$800	per	share	in	late	December,	before	dropping	slightly	in	mid-February.
This	visualization	is	much	more	reader-friendly	(and	informative)	than	the	stock
DataFrame	output	earlier!

NOTE

In	case	you	can’t	locate	the	generated	plot,	the	plots	and	charts	appear
in	the	Plots	pane	in	the	Spyder	IDE.	You	may	need	to	click	the	Plots	tab
to	see	them.

TRY	IT	OUT

Run	price_plot.py	and	generate	a	stock	price	plot	for	Facebook	(ticker	symbol	FB)	from
September	1,	2020	to	February	28,	2021.

Create	Candlestick	Charts

Price	plots	are	great	for	summarizing	patterns	using	one	observation	per	day.
Sometimes	you’re	interested	in	several	intraday	price	movements,	such	as	the
range	of	the	price	fluctuation	in	a	given	day,	whether	the	closing	price	is	higher
or	lower	than	the	opening	price,	and	so	on.	With	candlestick	charts,	you	can
visualize	four	pieces	of	information	each	day	for	a	stock:	daily	high,	daily	low,
opening	price,	and	closing	price.

The	following	script	generates	the	candlestick	chart	for	Amazon	stock	in	the
month	of	February	2021.	I	don’t	recommend	plotting	stock	prices	from	more
than	one	month	because	the	chart	may	become	too	crowded,	making	it	hard	to
detect	patterns.

First,	you	need	to	install	the	third-party	mplfinance	module.	Open	your
Anaconda	prompt	(in	Windows)	or	a	terminal	(in	Mac	or	Linux),	activate	the
virtual	environment	chatting,	and	run	the	following	command:

pip	install	mplfinance

Then	open	your	Spyder	editor	and	save	Listing	14-6	as	candle_stick.py	in	your
chapter	folder.

import	matplotlib.pyplot	as	plt

from	pandas_datareader	import	data	as	pdr

import	matplotlib.dates	as	mdates

from	mplfinance.original_flavor	import	candlestick_ohlc

#	Set	the	start	and	end	date

start_date	=	"2021-02-01"

end_date	=	"2021-02-28"

#	Choose	stock	ticker	symbol

ticker	=	"AMZN"

#	Get	stock	price

stock	=	pdr.get_data_yahoo(ticker,	start=start_date,	

end=end_date)

#	Obtain	dates

stock['Date']	=	stock.index.map(mdates.date2num)

#	Choose	the	four	daily	prices:	open,	high,	low,	and	close

1	df_ohlc	=	stock[['Date','Open',	'High',	'Low',	'Close']]

#	Choose	figure	size

figure,	fig	=	plt.subplots(dpi=128,	figsize	=	(8,4))

#	Format	dates

formatter	=	mdates.DateFormatter('%m/%d/%Y')

#	Choose	x-axis

fig.xaxis.set_major_formatter(formatter)

fig.xaxis_date()

2	plt.setp(fig.get_xticklabels(),	rotation	=	10)

#	Create	the	candlestick	chart

3	candlestick_ohlc(fig,	

																	df_ohlc.values,	

																	width=0.8,	

																	colorup='black',	

																	colordown='gray')

#	Put	text	in	the	chart	that	black	color	means	close	>	open

4	plt.figtext(0.3,0.2,'Black:	Close	>	Open')

#	Put	text	in	the	chart	that	gray	color	means	close	<	open

plt.figtext(0.3,0.15,'Gray:	Close	<	Open')

#	Put	chart	title	and	axis	labels

5	plt.title(f'Candlesticks	Chart	for	{ticker}')

plt.ylabel('Price')

plt.xlabel('Date')

plt.show()

Listing	14-6:	The	script	to	create	a	candlestick	chart

We	import	all	needed	modules	and	functions,	including	the
candlestick_ohlc()	function	from	the	mplfinance	module	that	we’ll	use	to
create	the	candlestick	chart.

At	1,	we	select	the	four	daily	prices	that	we	want	to	extract	and	visualize	in
the	chart:	opening	price,	daily	high,	daily	low,	and	closing	price.

The	setp()	function	from	matplotlib	sets	object	properties,	and	we	invoke	it
to	rotate	the	dates	on	the	x-axis	2.	We	pass	two	arguments	(the	first	to	obtain
the	x-axis	label	and	the	second	to	set	the	property)	to	rotate	the	x-axis	label	10
degrees,	so	text	doesn’t	overlap.	At	3,	we	use	candlestick_ohlc()	to	generate
the	candlestick	chart.	The	first	argument	specifies	where	to	place	the	chart,	and
the	second	specifies	the	data	to	use.	The	third	argument	is	the	width	of	the
candle	body	relative	to	the	distance	between	two	observations	(the	distance	on
the	x-axis	between	two	trading	days).

The	candlestick	chart	uses	colors	to	convey	additional	data.	We	use	black	to
indicate	that	the	closing	price	is	higher	than	the	opening	price;	otherwise,	the
value	is	gray.	The	information	is	also	conveyed	in	the	legend	4.	Finally,	we	give
the	chart	a	title	and	label	the	two	axes	5.

The	candlestick	chart	for	Amazon	stock	prices	in	February	2021	is	shown	in

Figure	14-4.	The	blank	spaces	in	the	chart	are	non-trading	days	(weekends	and
holidays).

The	daily	high	and	daily	low	are	at	the	ends	of	the	thin	lines	(which	look	like
candle	wicks),	while	the	opening	and	closing	prices	are	at	the	ends	of	the	wide
lines	(which	look	like	candle	bodies).	Hence	the	name!

From	this,	we	can	quickly	see	that,	on	February	1,	the	price	jumped	up:	the
body	of	the	candle	spans	nearly	$100	and	is	colored	black.	Compare	this	to	the
following	day,	where,	although	the	thin	line	is	relatively	long,	the	candle	body	is
short,	showing	that	despite	fluctuations,	it	closed	at	nearly	the	same	price	that	it
opened	at.

Figure	14-4:	A	candlestick	chart	for	Amazon	daily	stock	prices	in	February	2021

TRY	IT	OUT

Run	candle_stick.py	to	generate	a	candlestick	chart	for	Wells	Fargo	(ticker	symbol	WFC)
from	February	1,	2021	to	February	28,	2021.

Add	Voice	Control
Let’s	add	the	speech	functionality.	When	you	say	the	company	name,	the	script

will	search	for	the	ticker	symbol	of	the	firm’s	stock,	retrieve	daily	price
information,	and	display	the	plot	or	chart.	We	first	need	to	create	two	local
modules:	one	to	display	stock	price	plots	and	one	to	show	candlestick	charts.

The	Price	Plot	Module
We’ll	create	a	stock	price	plot	module	based	on	price_plot.py.	Enter	Listing	14-7
in	your	Spyder	editor	and	save	it	as	myplot.py.

--snip--

from	datetime	import	date,	timedelta	

from	mptpkg	import	print_say

1	def	price_plot(firm):

				try:

								#	Extract	the	source	code	from	the	website

						2	url	=	

'https://query1.finance.yahoo.com/v1/finance/search?q='+firm

								response	=	requests.get(url)

								#	Read	the	JSON	data

								response_json	=	response.json()

								#	Obtain	the	value	corresponding	to	"quotes"

								quotes	=	response_json['quotes']

								#	Get	the	ticker	symbol

								ticker	=	quotes[0]['symbol']

								#	Set	the	start	and	end	date

						3	end_date	=	date.today().strftime("%Y-%m-%d")

								start_date	=	(date.today()	-	

timedelta(days=180)).strftime("%Y-%m-%d")

								#	Get	stock	price

								stock	=	pdr.get_data_yahoo(ticker,	start=start_date,	

end=end_date)

								#	Obtain	dates

								stock['Date']=stock.index.map(mdates.date2num)

								#	Choose	figure	size

						4	fig	=	plt.figure(dpi=128,	figsize=(10,	6))

								#	Format	date	to	place	on	the	x-axis

								formatter	=	mdates.DateFormatter('%m/%d/%Y')

								plt.gca().xaxis.set_major_formatter(formatter)

								#	Plot	data

								plt.plot(stock['Date'],	stock['Adj	Close'],	c='blue')

								#	Format	plot

								plt.title\

								(f"The	Stock	Price	of	{firm}	in	the	Last	Six	Months",	

fontsize=16)

								plt.xlabel('Date',	fontsize=10)

								fig.autofmt_xdate()

								plt.ylabel("Price",	fontsize=10)

								plt.show()				

								#	Let	you	know	that	the	plot	is	ready	via	voice	and	print

						5	print_say(f"OK,	here	is	the	stock	price	plot	for	

{firm}.")

				except:

								print_say("Sorry,	not	a	valid	entry!")

Listing	14-7:	The	script	for	the	stock	plot	module

We	import	the	modules,	including	those	we	used	to	plot	stock	prices	and	to
parse	the	HTML	source	file	to	find	the	firm’s	ticker	symbol.	We	also	import	the
print_say()	function	from	the	local	mptpkg	package.

At	1,	we	start	stock_plot(),	which	takes	the	company	name	as	the
argument.	We	again	use	try	and	except	to	prevent	crashes.	We	first	find	the
ticker	symbol	of	the	firm	2.

Here	we	make	the	price	information	dynamic	3.	The	end	date	is	today’s	date,
while	the	start	date	is	six	months	ago.	The	script	will	generate	a	plot	4	and	then
tell	you	the	plot	is	ready	5.	If	the	ticker	symbol	or	the	price	information	can’t	be
found,	the	script	will	print	and	say,	“Sorry,	not	a	valid	entry!”

The	Candlestick	Chart	Module
Next	we’ll	create	the	candlestick	chart	module.	Open	mychart.py	from	the
book’s	resources,	as	shown	in	Listing	14-8.

from	mplfinance.original_flavor	import	candlestick_ohlc

from	mptpkg	import	print_say

from	datetime	import	date,	timedelta

--snip--

1	def	candle_stick(firm):

				

--snip--

								#	Set	the	start	and	end	date

								start_date	=	(date.today()	-	

timedelta(days=14)).strftime("%Y-%m-%d")

								end_date	=	date.today().strftime("%Y-%m-%d")

--snip--

								#	Choose	the	four	daily	prices:	open,	high,	low,	and	

close

						2	df_ohlc	=	stock[['Date','Open',	'High',	'Low',	'Close']]

								#	Choose	figure	size

								figure,	fig	=	plt.subplots(dpi=128,	figsize	=	(8,4))

--snip--

								plt.show()

						3	print_say(f"Here	is	the	candlestick	chart	for	{firm}.")

--snip--

				except:

								print_say("Sorry,	not	a	valid	entry!")

Listing	14-8:	The	script	to	create	the	candlestick	chart	module

We	import	the	modules,	including	the	candlestick_ohlc()	function	from	the
mplfinance	module.

We	define	candle_stick()	at	1.	Here	we	make	the	price	information
dynamic.	The	end	date	is	today’s	date,	while	the	start	date	is	two	weeks	ago.	We
then	perform	the	same	actions	as	in	myplot.py	to	search	for	the	ticker	symbol.
With	the	ticker	symbol,	we	retrieve	the	daily	stock	price	information	in	the	past
14	days	from	Yahoo!	Finance.	I’ve	snipped	this	part	of	the	script	to	save	space.

The	data	used	for	the	candlestick	chart	will	be	the	date	plus	the	opening	price,
daily	high	and	low	prices,	and	closing	price	2.	The	script	builds	the	candlestick
chart	and	lets	you	know	when	it’s	done	3.

The	Main	Script
Next,	we’ll	import	the	two	modules	to	the	main	script	so	that	we	can	voice-
activate	a	stock	price	plot	or	a	candlestick	chart.	Enter	Listing	14-9	in	your
Spyder	editor	and	save	it	as	plot_chart_hs.py	in	your	chapter	folder.

from	myplot	import	price_plot

from	mychart	import	candle_stick

from	mptpkg	import	voice_to_text,	print_say

#	Start	an	infinite	loop

1	while	True:

				#	Obtain	voice	input	from	you

				print_say("How	may	I	help	you?")

				inp	=	voice_to_text()

				print_say(f"You	said	{inp}.")

				#	If	you	want	to	stop,	say	"stop	listening"

		2	if	"stop	listening"	in	inp:

								print_say("Nice	talking	to	you,	goodbye!")

								break

				#	If	"price	pattern	for"	in	voice,	activate	plot	

functionality

		3	elif	"price	pattern	for"	in	inp:

								pos	=	inp.find('price	pattern	for	')

								firm	=	inp[pos+len('price	pattern	for	'):]

								price_plot(firm)

								continue

				#	If	"candlestick	chart	for"	in	voice,	activate	chart	

functionality	

		4	elif	"chart	for"	in	inp:

								pos	=	inp.find('chart	for	')

								firm	=	inp[pos+len('chart	for	'):]

								candle_stick(firm)

								continue

				#	Otherwise,	go	to	the	next	iteration

				else:

								continue

Listing	14-9:	The	script	to	voice-control	plot	and	chart	creation

We	import	the	modules	and	add	the	print_say()	and	voice_to_text()
functions.	We	also	import	price_plot()	from	the	local	myplot	module	and
candle_stick()	from	the	local	mychart	module	that	we	just	created.

At	1,	we	start	an	infinite	loop	that	asks	for	your	voice	input.	To	exit	the
script,	you	say,	“Stop	listening”	2.	To	see	the	stock	plot	of	a	firm	(say,	Goldman
Sachs),	you	say,	“Stock	pattern	for	Goldman	Sachs.”	The	“stock	pattern	for”	will
trigger	the	stock	plot	functionality	3.	We	use	“stock	pattern”	instead	of	“stock
plot”	because	it’s	easier	for	the	microphone	to	pick	up.	The	script	then	extracts
the	company	name,	which	is	Goldman	Sachs	in	this	case,	and	uses	it	as	the
argument	in	the	price_plot()	function.

To	see	the	candlestick	chart	of	a	firm	(say,	General	Motors),	you	say,	“Chart
for	General	Motors.”	The	“chart	for”	part	of	the	voice	command	will	trigger	the
candlestick	chart	functionality	4.	The	script	then	extracts	the	company	name
and	uses	it	as	the	argument	in	the	candle_stick()	function.

NOTE

Depending	on	your	operating	system,	you	may	want	to	change	the
trigger	words	in	the	script.	For	example,	if	the	microphone	can’t	pick	up
“Stop	listening,”	you	can	change	it	to	stop	or	stop	running.

Here’s	my	sample	output:

How	may	I	help	you?

You	said	price	pattern	for	Oracle.

OK,	here	is	the	stock	price	plot	for	Oracle.

How	may	I	help	you?

You	said	chart	for	Intel.

Here	is	the	candlestick	chart	for	Intel.

How	may	I	help	you?

You	said	stop	listening.

Nice	talking	to	you,	goodbye!

The	“price	pattern	for	Oracle”	phrase	triggered	the	price	plot	functionality,
and	the	script	generated	the	price	plot	for	Oracle,	shown	in	Figure	14-5.

Figure	14-5:	Voice-controlled	stock	price	plot	for	Oracle

The	“chart	for	Intel”	phrase	prompted	the	script	to	create	a	candlestick	chart
for	Intel,	shown	in	Figure	14-6.

Figure	14-6:	Voice-controlled	candlestick	chart	for	Intel

Voice-Controlled	Stock	Report
While	the	price	plots	and	candlestick	charts	allow	us	to	see	recent	price
movements,	they	don’t	give	us	information	on	how	a	stock	has	performed
relative	to	the	general	market.	Many	times,	investors	are	interested	in	how	well	a
stock	has	performed	in	comparison	to	a	benchmark	index.	They’re	also
interested	in	the	risk	of	a	stock,	measured	in	how	volatile	a	stock’s	price	has
been	relative	to	the	market	as	a	whole.

To	that	end,	we’ll	progress	to	a	more	detailed	analysis	of	a	stock’s	price.
You’ll	obtain	recent	daily	stock	price	information	and	perform	regression
analyses	to	figure	out	the	recent	performance	and	market	risk	of	the	stock.	You’ll
calculate	the	stock’s	abnormal	return	(alpha,	which	is	the	relative	performance
of	the	stock	compared	to	the	market	as	a	whole)	and	the	market	risk	(beta,	which
measures	how	volatile	the	stock’s	return	has	been	compared	to	the	market	as	a
whole)	by	running	a	regression	of	the	stock’s	return	on	the	market	return.

NOTE

For	detailed	explanations	of	alpha	and	beta	of	stock,	see,	for	example,
the	relevant	articles	on	Wikipedia:

https://en.wikipedia.org/wiki/Alpha_(finance)	and
https://en.wikipedia.org/wiki/Beta_(finance).

Analyze	Recent	Stock	Performance	and	Risk
You’ll	use	the	same	methods	we’ve	used	so	far	to	extract	recent	daily	stock	price
information	from	Yahoo!	Finance	using	the	pandas_datareader	module.	You’ll
then	use	a	new	module	statsmodels	to	perform	statistical	analyses.

First,	we’ll	install	the	third-party	module	and	extract	data.	Go	to	your
Anaconda	prompt	(in	Windows)	or	a	terminal	(in	Mac	or	Linux)	and	activate	the
virtual	chatting	environment.	Then	run	the	following	command:

conda	install	statsmodels	

Enter	Listing	14-10	in	your	Spyder	editor	and	save	the	script	as	alpha_beta.py
in	your	chapter	folder.

from	datetime	import	date,	timedelta

import	statsmodels.api	as	sm

from	pandas_datareader	import	data	as	pdr

#	Set	the	start	and	end	dates

end_date	=	date.today().strftime("%Y-%m-%d")

start_date	=	(date.today()	-	timedelta(days=180)).strftime("%Y-

%m-%d")

market	=	"^GSPC"	

ticker	=	"MSFT"

#	Retrieve	prices

sp	=	pdr.get_data_yahoo(market,	start=start_date,	end=end_date)

stock	=	pdr.get_data_yahoo(ticker,	start=start_date,	

end=end_date)

#	Calculate	returns	for	sp500	and	the	stock

sp['ret_sp']	=	(sp['Adj	Close']/sp['Adj	Close'].shift(1))-1

stock['ret_stock']	=	(stock['Adj	Close']/stock['Adj	

Close'].shift(1))-1

#	Merge	the	two	datasets,	keep	only	returns

df	=	sp[['ret_sp']].merge(stock[['ret_stock']],\

								left_index=True,	right_index=True)	

#	Add	risk-free	rate	(assume	constant	for	simplicity)	

1	df['rf']	=	0.00001

https://en.wikipedia.org/wiki/Alpha_(finance)
https://en.wikipedia.org/wiki/Beta_(finance)

#	We	need	a	constant	to	run	regressions

df['const']	=	1	

df['exret_stock']	=	df.ret_stock	-	df.rf

df['exret_sp']	=	df.ret_sp	-	df.rf

#	Remove	missing	values

df.dropna(inplace=True)	

#	Calculate	the	stock's	alpha	and	beta

2	reg	=	sm.OLS(endog=df['exret_stock'],\

													exog=df[['const',	'exret_sp']],	missing='drop')

results	=	reg.fit()

print(results.summary())

3	alpha	=	round(results.params['const']*100,3)

beta	=	round(results.params['exret_sp'],2)

#	Print	the	values	of	alpha	and	beta

print(f'The	alpha	of	the	stock	of	{ticker}	is	{alpha}	percent.')

print(f'The	beta	of	the	stock	of	{ticker}	is	{beta}.')

Listing	14-10:	The	script	to	calculate	stock	alpha	and	beta

We	import	the	modules	and	then	specify	the	start	and	end	dates	of	the	data	you
want	to	extract.	We	again	use	the	most	recent	six-month	period.	We	also	provide
the	ticker	symbols	of	the	market	index,	which	is	an	index	that	represents	the
market	as	a	whole.	The	S&P	500	Index	is	often	used,	and	that	is	what	we	will
use.	The	company	we’ll	analyze	is	Microsoft	Corporation.	We	use	the
get_data_yahoo()	method	in	the	pandas_datareader	module	to	extract	daily
stock	price	information	for	the	market	index	and	Microsoft,	and	we	save	the	data
as	two	pandas	DataFrames	named	sp	and	stock,	respectively.

We	then	calculate	the	daily	stock	returns	for	both	the	S&P	500	and	Microsoft.
The	shift()	method	in	pandas	allows	us	to	shift	the	index	by	a	desired	number
of	periods.	We	use	shift(1)	to	obtain	the	price	information	of	the	previous
trading	day.	This	allows	us	to	see	how	today	compared	to	yesterday.	Comparing
the	two	days	enables	us	to	calculate	returns.	The	gross	return	is	the	current	value
divided	by	the	value	at	the	close	of	the	previous	trading	day,	and	the	net	return	is
the	gross	return	minus	one.

To	calculate	alpha	and	beta,	we	first	merge	the	two	datasets	into	one.	For
simplicity,	we	use	a	small	constant	value	for	the	risk-free	rate	1.	We	then	use
the	OLS()	method	in	the	statsmodels	module	to	run	a	regression	2	and	print	out
the	regression	results.	The	alpha	and	beta	we	want	are	the	regression	coefficients
on	the	constant	and	the	excess	return	on	the	market,	respectively	3.

Figure	14-7	shows	the	regression	results.

Figure	14-7:	Regression	analysis	results	for	Microsoft

Finally,	we	print	out	the	values	of	the	firm’s	alpha	and	beta	as	follows:

The	alpha	of	the	stock	MSFT	is	0.202	percent.

The	beta	of	the	stock	MSFT	is	1.1.

The	analysis	shows	that	the	alpha	and	beta	are	0.202	percent	and	1.1,
respectively.	This	means	Microsoft	has	outperformed	similar	stocks	on	the
market	by	0.202	percent	per	day,	and	the	company	has	a	market	risk	slightly
greater	than	an	average	firm	(which	has	a	beta	of	1),	which	means	the	stock’s
return	has	been	slightly	more	volatile	than	the	market	as	a	whole.

Add	Voice	Control
Let’s	add	the	voice	control!	You’ll	ask	about	a	company,	and	the	script	will
search	for	the	ticker	symbol,	retrieve	daily	stock	information,	and	calculate	the
alpha	and	beta.	Then	the	script	will	let	you	know	that	information	by	voice.	The
phrase	“stock	report	for”	will	trigger	the	stock	report	functionality.

Enter	Listing	14-11	in	your	Spyder	editor	and	save	the	script	as
alpha_beta_hs.py	in	your	chapter	folder.

from	datetime	import	date,	timedelta	

import	statsmodels.api	as	sm

from	pandas_datareader	import	data	as	pdr

import	requests

from	mptpkg	import	voice_to_text,	print_say

1	def	alpha_beta(firm):

				try:

								#	Extract	the	source	code	from	the	website

						2	url	=	

'https://query1.finance.yahoo.com/v1/finance/search?q='+firm

								response	=	requests.get(url)

								#	Read	the	JSON	data

								response_json	=	response.json()

								#	Obtain	the	value	corresponding	to	"quotes"

								quotes	=	response_json['quotes']

								#	Get	the	ticker	symbol

								ticker	=	quotes[0]['symbol']

--snip--

				#	Speak	the	values	of	alpha	and	beta

		3	print_say(f'The	alpha	of	the	stock	of	{firm}	is	{alpha}	

percent.')

				print_say(f'The	beta	of	the	stock	of	{firm}	is	{beta}.')

#	Start	an	infinite	loop

4	while	True:

				#	Obtain	voice	input	from	you

				print_say("How	may	I	help	you?")

				inp	=	voice_to_text()

				print_say(f"You	said	{inp}.")

				#	If	you	want	to	stop,	say	"stop	listening"

				if	inp	==	"stop	listening":

								print_say("Nice	talking	to	you;	goodbye!")

								break

				#	If	keywords	in	command,	go	to	the	stock	report	

functionality

				elif	"stock	report	for"	in	inp:

								#	Locate	the	company	name	

								pos	=	inp.find('stock	report	for	')

						5	firm	=	inp[pos+len('stock	report	for	'):]

								alpha_beta(firm)

								continue

				#	Otherwise,	go	to	the	next	iteration

				else:

								continue

Listing	14-11:	Voice-control	the	calculation	of	stock	alpha	and	beta

We	import	the	modules,	including	the	requests	module	and	the	print_say()
and	voice_to_text()	functions.

At	1,	we	start	the	definition	of	alpha_beta(),	using	the	firm	name	as	its
argument.	As	before,	we	use	the	plus	sign	to	join	words	together	to	use	as	search
terms	for	the	ticker	symbol	on	Yahoo!	Finance	2.	We	use	try	and	except	to
prevent	crashes	and	let	the	user	know	if	the	entry	is	invalid.	The	script	then
calculates	the	firm’s	alpha	and	beta,	as	it	does	in	alpha_beta.py,	and	both	prints
and	speaks	the	alpha	and	beta	3.

At	4,	we	start	an	infinite	loop	that	asks	for	your	voice	input.	To	exit	the
script,	say,	“Stop	listening.”	Otherwise,	you	say,	“Stock	report	for”	followed	by
the	company	name	to	activate	the	stock	report	functionality.	The	script	extracts
the	company	name	from	your	voice	command	and	prepares	the	report	for	you
5.

Here’s	my	sample	interaction:

How	may	I	help	you?

You	said	stock	report	for	alibaba.

The	alpha	of	the	stock	alibaba	is	0.059	percent.

The	beta	of	the	stock	alibaba	is	0.61.

How	may	I	help	you?

You	said	stop	listening.

Nice	talking	to	you;	goodbye!

I	asked	for	the	“stock	report	for	Alibaba,”	and	the	script	obtained	the	report
for	me	and	replied,	“The	alpha	of	Alibaba	is	0.059	percent;	the	beta	of	the	stock
Alibaba	is	0.61.”

TRY	IT	OUT

Use	alpha_beta_hs.py	to	obtain	a	stock	report	for	British	Petroleum.

Summary
In	this	chapter,	you	applied	the	speech	recognition	and	text-to-speech	techniques
to	the	financial	market.	These	skills—scraping	information,	forming	search
terms	that	can	be	used	in	URLs,	and	retrieving	real-time	as	well	as	recent	daily
stock	price	information—can	be	applied	to	a	huge	variety	of	web	applications.
You	also	learned	a	few	data	analysis	and	visualization	skills,	which	are	also
handy	for	many	applications.

In	the	next	chapter,	you’ll	create	talking	graphical	market	watches	for
financial	markets	such	as	the	US	stock	market	or	the	foreign	exchange	market.

End-of-Chapter	Exercises
1.	 Modify	price_plot.py	so	that	the	start	and	end	dates	are	March	1,	2021	and

June	1,	2021,	respectively,	and	the	plot	color	is	red.

2.	 Modify	candle_stick.py	so	that	the	dates	on	the	x-axis	are	in	the	format	of
01-01-2021	(instead	of	01/01/2021	or	January	1,	2021)	and	rotated	15
degrees.

15
STOCK	MARKET	WATCH

In	this	chapter,	you’ll	create	a	graphical,
speaking	app	that	monitors	the	US	stock
market	in	real	time.	When	you	run	the

script	during	trading	hours,	you’ll	see	a	graphical	display
of	the	major	stock	indexes	and	a	couple	of	stocks	you
select.	The	app	also	lets	you	know	the	values	of	the
indexes	and	the	stock	prices	in	a	human	voice.
To	build	up	the	necessary	skills,	you’ll	first	create	a	graphical	Bitcoin	watch	to

display	live	price	information,	using	the	Python	tkinter	package.	You	can
generalize	these	techniques	to	other	financial	markets	such	as	the	world	stock
market	or	the	US	Treasury	bond	market.

As	always,	all	scripts	are	available	through	the	book’s	resources	page	at
https://www.nostarch.com/make-python-talk/,	and	you	should	make	the	folder
/mpt/ch15/	for	this	chapter.

NEW	SKILLS

Retrieving	live	Bitcoin	prices

Using	and	manipulating	JSON	data

Making	widgets	and	animations	using	the	tkinter	package

Generalizing	these	techniques	to	other	financial	markets

https://www.nostarch.com/make-python-talk/

Bitcoin	Watch
We’ll	start	with	Bitcoin	because	the	Bitcoin	price	is	updated	24/7,	unlike	the
stock	market,	which	gives	live	price	updates	only	when	it’s	open.	In	the	process
of	creating	a	Bitcoin	watch,	you’ll	learn	the	necessary	skills	to	build	a	market
watch	for	other	financial	markets.	The	script	tells	you	whenever	the	Bitcoin
price	changes	or	if	the	price	moves	outside	preset	upper	or	lower	bounds.

You’ll	first	learn	how	to	read	JSON	data	and	some	basics	of	the	tkinter
package.

How	to	Read	JSON	Data
Bitcoin	prices	are	available	online	for	free	and	are	updated	every	minute	or	so
day	and	night.	We’ll	access	Bitcoin	prices	through	Python	by	using	the	API
https://api.coindesk.com/v1/bpi/currentprice.json.	Open	the	URL	with	a	web
browser,	and	you	should	see	price	information	similar	to	Figure	15-1.

Figure	15-1:	Live	online	information	about	Bitcoin	price

This	data	is	formatted	in	JSON	and	hard	to	read.	There	are	so	many	nested
dictionaries,	it’s	hard	to	tell	where	one	dictionary	starts	and	ends.	We	discussed
in	Chapter	14	how	to	make	the	data	easier	to	understand	by	using	an	online
JSON	data	formatter.

Similar	to	what	you	did	in	that	chapter,	go	to	the	online	JSON	data	formatter

https://api.coindesk.com/v1/bpi/currentprice.json

website,	https://jsonformatter.curiousconcept.com/,	paste	the	data	from	Figure
15-1	into	the	designated	space,	and	then	click	Process.	The	formatter	will
convert	the	data	into	a	much	more	readable	format,	shown	in	Listing	15-1.

{

		1	"time":{

						"updated":"Mar	3,	2021	09:58:00	UTC",

						"updatedISO":"2021-03-03T09:58:00+00:00",

						"updateduk":"Mar	3,	2021	at	09:58	GMT"

			},

		2	"disclaimer":"This	data	was	produced	from	the	CoinDesk	

				Bitcoin	Price	Index	(USD).	Non-USD	currency	data	converted	

				using	hourly	conversion	rate	from	openexchangerates.org",

		3	"chartName":"Bitcoin",

		4	"bpi":{

						"USD":{

									"code":"USD",

									"symbol":"$",

									"rate":"51,462.6831",

									"description":"United	States	Dollar",

									"rate_float":51462.6831

						},

						"GBP":{

									"code":"GBP",

									"symbol":"£",

									"rate":"36,859.0146",

									"description":"British	Pound	Sterling",

									"rate_float":36859.0146

						},

						"EUR":{

									"code":"EUR",

									"symbol":"€",

									"rate":"42,617.8433",

									"description":"Euro",

									"rate_float":42617.8433

						}

			}

}

Listing	15-1:	The	formatted	JSON	data	about	the	Bitcoin	price

The	dataset	is	a	large	dictionary	of	four	elements	with	keys	named	time	1,
disclaimer	2,	chartName	3,	and	bpi	4.	The	value	for	the	bpi	key	is,	in	turn,
another	dictionary	with	three	keys:	USD,	GBP,	and	EUR.	These	represent	the

https://jsonformatter.curiousconcept.com/

Bitcoin	price	in	US	dollars,	British	pounds,	and	Euros,	respectively.

We	want	the	Bitcoin	price	in	US	dollars.	The	script	bitcoin_price.py,	shown	in
Listing	15-2,	retrieves	the	Bitcoin	price	and	prints	it	out.

import	requests

#	Specify	the	url	to	find	the	bitcoin	price

url	=	'https://api.coindesk.com/v1/bpi/currentprice.json'

#	Retrieve	the	live	information	from	bitcoin	url

response	=	requests.get(url)

#	Read	the	JSON	data

response_json	=	response.json()

#	Obtain	the	USD	dictionary

usd	=	response_json['bpi']['USD']

#	Get	the	price

price	=	usd['rate_float']

print(f"The	Bitcoin	price	is	{price}	dollars.")

Listing	15-2:	The	script	to	retrieve	the	Bitcoin	price

We	import	the	requests	module	and	specify	the	URL	for	the	live	Bitcoin	price.
We	then	use	the	get()	method	from	the	requests	module	to	pull	the	data	from
the	API.	The	json()	method	in	the	requests	module	reads	the	information	into
JSON	format.	We	then	extract	the	USD	dictionary	that	contains	all	the	Bitcoin
price	information	in	US	dollars.	The	value	we	need	from	the	dictionary	is	the
price,	and	we	use	the	rate_float	key	to	retrieve	it.

Finally,	we	print	out	the	Bitcoin	price.	The	output	should	be	something	like
this:

The	Bitcoin	price	is	51462.6831	dollars.

TRY	IT	OUT

Run	bitcoin_price.py	and	compare	the	result	to	a	Google	search	for	the	current	Bitcoin	price.

A	Quick	Introduction	to	the	tkinter	Package
Python’s	default	standard	package	for	building	a	GUI	is	tkinter,	short	for	Tk
interface.	The	tkinter	package	has	a	variety	of	widgets,	which	are	various	tools

like	buttons,	labels,	entries,	and	message	boxes.	Widgets	appear	as	different
types	of	small	windows	inside	the	top-level	root	window,	but	they	can	also	be
stand-alone	entities.	We’ll	focus	on	labels	since	we’ll	use	them	in	the	market
watch	projects.

NOTE

For	more	information	about	Tk	and	tkinter,	visit
https://docs.python.org/3/library/tkinter.html.

The	tkinter	package	is	in	the	Python	standard	library	and	needs	no	installation.
If	you	are	using	Linux	and	encounter	the	ModuleNotFoundError	when	importing
tkinter,	execute	this	line	of	command	in	a	terminal	to	install	it:

sudo	apt-get	install	python3-tk

I’ll	introduce	you	to	the	basics	of	tkinter,	including	how	to	set	up	a	screen	and
create	a	label	widget.	The	script	tk_label.py,	shown	in	Listing	15-3,	sets	up	a
screen	and	adds	a	label	to	it.

import	tkinter	as	tk

#	Create	the	root	window

root	=	tk.Tk()

#	Specify	the	title	and	size	of	the	root	window

root.title("A	Label	Inside	a	Root	Window")

root.geometry("800x200")

#	Create	a	label	inside	the	root	window

label	=	tk.Label(text="this	is	a	label",	fg="Red",	font=

("Helvetica",	80))

label.pack()

#	Run	the	game	loop

root.mainloop()

Listing	15-3:	Create	a	label	in	the	tkinter	package

We	import	the	tkinter	package.	We	set	up	a	root	window,	which	is	used	to	hold
all	the	widgets	we’ll	add	to	the	script.	We	use	the	command	Tk()	and	name	the
root	window	root.

Labels	are	a	simple	form	of	widget	used	to	display	messages	or	images	for

https://docs.python.org/3/library/tkinter.html

informational	purposes.	We	give	the	root	window	a	title,	A	Label	Inside	a
Root	Window,	which	will	appear	in	the	title	bar.	We	call	the	geometry()	method
to	specify	the	width	and	height	of	the	root	window	as	800	by	200	pixels.

We	initiate	a	label	by	using	Label(),	which	takes	the	text	(or	image)	you	want
to	display.	You	can	optionally	specify	the	color	and	font	too.	We	use	red	and	set
the	font	to	("Helvetica",	80).

With	the	pack()	method,	we	specify	where	we	want	to	put	the	label.	The
default	is	to	line	up	widgets	starting	from	the	top	center	of	the	root	window.
Finally,	mainloop()	starts	the	game	loop	so	that	the	window	shows	up	and	stays
on	your	computer	screen.

Run	the	script	and	you	should	see	Figure	15-2.

Figure	15-2:	A	label	inside	the	root	window	in	tkinter

A	Graphical	Bitcoin	Watch
Now	we’ll	create	a	graphical	Bitcoin	watch	by	using	the	tkinter	package.	Open
your	Spyder	editor	and	save	the	code	in	Listing	15-4	as	bitcoin_tk.py	in	your
chapter	folder.

import	tkinter	as	tk

import	requests

1	import	arrow

#	Specify	the	url	to	find	the	Bitcoin	price

url	=	'https://api.coindesk.com/v1/bpi/currentprice.json'

#	Create	a	root	window	to	hold	all	widgets

2	root	=	tk.Tk()

#	Specify	the	title	and	size	of	the	root	window

root.title("Bitcoin	Watch")

root.geometry("1000x400")

#	Create	a	first	label	using	the	Label()	function

3	label	=	tk.Label(text="",	fg="Blue",	font=("Helvetica",	80))

label.pack()

#	Create	a	second	label

label2	=	tk.Label(text="",	fg="Red",	font=("Helvetica",	60))

label2.pack()

#	Define	the	bitcoin_watch()	function

4	def	bitcoin_watch():

				#	Get	the	live	information	from	Bitcoin	url

				response	=	requests.get(url)

				response_json	=	response.json()

				price	=	response_json['bpi']['USD']['rate_float']

				#	Obtain	current	date	and	time	information									

				tdate	=	arrow.now().format('MMMM	DD,	YYYY')

				tm	=	arrow.now().format('hh:mm:ss	A')

				#	Put	the	date	and	time	information	in	the	first	label

		5	label.configure(text=tdate	+	"\n"	+	tm)

				#	Put	price	info	in	the	second	label								

				label2.configure(text=f'Bitcoin:	{price}',	justify=tk.LEFT)

				#	Call	the	bitcoin_watch()	function	after	1000	milliseconds

		6	root.after(1000,	bitcoin_watch)

#	Call	the	bitcoin_watch()	function

bitcoin_watch()

#	Run	the	game	loop

root.mainloop()

Listing	15-4:	Create	a	graphical	Bitcoin	price	watch

We	import	the	necessary	functions	and	modules,	including	the	arrow	module
to	show	the	current	time	and	date	1.	We	then	use	the	Tk()	method	to	create	a
top-level	root	window	and	specify	the	title	and	the	size	2.

We	create	two	labels	using	Label()	3.	We	first	leave	the	messages	in	both
labels	as	empty	strings	because	this	information	will	fill	in	from	the	Bitcoin
watch.	At	4,	we	define	bitcoin_watch().	The	function	first	uses	the	requests
module	to	obtain	the	Bitcoin	price	information	from	the	URL	we	provide.	We
also	obtain	the	current	date	and	time	and	save	them	in	the	variables	tdate	and
tm,	respectively.

At	5,	we	put	the	current	date	and	time	information	in	the	first	label,	using	the
escape	character	\n	to	separate	the	lines.	We	put	the	live	Bitcoin	price	in	the
second	label.

Next	we	set	animation	effects	6.	We	use	after()	to	call	another	function
after	a	specified	amount	of	time.	The	command	after(1000,	bitcoin_watch)
calls	the	function	bitcoin_watch()	after	1,000	milliseconds.	Calling	the
command	within	the	bitcoin_watch()	function	itself	creates	an	infinite	loop	in
which	all	the	command	lines	inside	bitcoin_watch()	will	be	executed	every
1,000	milliseconds.	The	result	is	that	the	time	is	constantly	updated,	and	you	can
see	the	time	value	changes	every	second.	If	you	keep	the	screen	live	long
enough,	you	will	also	see	the	Bitcoin	price	change	every	minute	or	so.

When	run,	the	script	should	look	similar	to	Figure	15-3.

Figure	15-3:	Using	the	after()	function	to	create	an	animated	Bitcoin	watch

TRY	IT	OUT

Run	bitcoin_tk.py	and	watch	it	for	about	three	minutes	to	see	how	often	the	price	updates.

A	Talking	Bitcoin	Watch
Next	we’ll	add	the	speech	functionality.	Whenever	the	price	updates,	the	script
will	let	you	know	in	a	human	voice.	We’ll	also	add	an	alert	system:	when	the
Bitcoin	price	moves	outside	the	preset	upper	and	lower	bounds,	the	script	will

alert	you	out	loud.

Open	bitcoin_watch.py	from	your	chapter	folder.	Its	differences	from
bitcoin_tk.py	are	highlighted	in	Listing	15-5.

--snip--

from	mptpkg	import	print_say

#	Specify	the	url	to	find	the	Bitcoin	price

url	=	'https://api.coindesk.com/v1/bpi/currentprice.json'

--snip--	

#	Create	a	second	label

label2	=	tk.Label(text="",	fg="Red",	font=("Helvetica",	60))

label2.pack()

#	Set	up	the	price	bounds

response	=	requests.get(url)

response_json	=	response.json()

1	oldprice	=	response_json['bpi']['USD']['rate_float']

maxprice	=	oldprice	*	1.05

minprice	=	oldprice	*	0.95

2	print_say(f'The	Bitcoin	price	is	now	{oldprice}!')

#	Define	the	bitcoin_watch()	function

def	bitcoin_watch():

		3	global	oldprice

				#	Get	the	live	information	from	Bitcoin	url

				response	=	requests.get(url)

				response_json	=	response.json()

				price	=	response_json['bpi']['USD']['rate_float']

				#	If	there	is	update	in	price,	announce	it				

		4	if	price	!=	oldprice:

								oldprice	=	price

								print_say(f'The	Bitcoin	price	is	now	{oldprice}!')

				#	If	price	goes	out	of	bounds,	announce	it				

		5	if	price	>	maxprice:

								print_say('The	Bitcoin	price	has	gone	above	the	upper	

bound!')

				if	price	<	price:

								print_say('The	Bitcoin	price	has	gone	below	the	lower	

bound!')

								#	Obtain	current	date	and	time	information									

				tdate	=	arrow.now().format('MMMM	DD,	YYYY')

				tm	=	arrow.now().format('hh:mm:ss	A')

--snip--

Listing	15-5:	Script	to	create	a	talking	graphical	Bitcoin	price	watch

We	import	the	modules,	including	the	print_say()	function	from	the	local
mptpkg	package.

We	retrieve	a	Bitcoin	price	to	use	as	the	starting	price	and	save	it	as	oldprice
1.	We	set	the	upper	and	lower	bounds	as	values	5	percent	above	and	below	the
value	stored	in	oldprice	and	save	them	as	maxprice	and	minprice,	respectively.
The	script	announces	in	a	human	voice	the	price	of	Bitcoin	at	that	moment	2.

We	declare	oldprice	a	global	variable	so	that	it	can	be	recognized	both	inside
and	outside	the	function	bitcoin_watch()	3.	Every	time	bitcoin_watch()	is
called,	it	obtains	the	latest	Bitcoin	price	and	compares	it	to	the	value	stored	in
oldprice.	If	the	values	are	different,	the	value	of	oldprice	is	updated	to	the	new
price,	and	the	script	announces	the	updated	price	4.

At	5,	the	script	checks	whether	the	price	has	gone	above	the	upper	bound;	if
yes,	it	makes	the	announcement.	Similarly,	the	script	checks	whether	the	price	is
below	the	lower	bound	and	makes	the	announcement	if	it	is.

This	output	is	from	running	the	script	for	a	few	minutes:

The	Bitcoin	price	is	now	51418.8064!

The	Bitcoin	price	is	now	51377.4967!

The	Bitcoin	price	is	now	51419.3027!

A	Talking	Stock	Market	Watch
Now	we’ll	use	these	skills	to	build	the	talking,	graphical,	live	US	stock	market
watch.	We’ll	make	several	significant	changes	to	the	Bitcoin	version.

First,	instead	of	showing	just	one	asset,	we’ll	cover	three	major	players	in	the
market:	Apple,	Amazon,	and	Tesla.	We’ll	also	show,	as	the	main	indexes	we	are
interested	in,	the	Dow	Jones	Industrial	Average	and	the	S&P	500.

Second,	instead	of	updating	every	thousand	milliseconds,	we’ll	ask	the	script
to	update	every	two	minutes.	The	script	needs	to	retrieve	five	pieces	of
information	instead	of	just	one,	and	updating	too	frequently	will	cause
information	overload	that	could	lead	to	the	script	freezing.	More	important,	the
values	for	the	market	indexes	and	prices	for	the	preceding	three	stocks	update
every	few	seconds	during	the	trading	hours.	Updating	too	often	would	make	the

announcements	come	nonstop	and	be	distracting.	You	can	choose	to	adjust	the
frequency	that	the	script	updates	to	your	own	liking.

Save	the	script	in	Listing	15-6	as	stock_watch.py	in	your	chapter	folder	or
download	it	from	the	book’s	resources	page.

import	tkinter	as	tk

import	arrow

from	yahoo_fin	import	stock_info	as	si

from	mptpkg	import	print_say

#	Create	a	root	window	hold	all	widgets

1	root	=	tk.Tk()

#	Specify	the	title	and	size	of	the	root	window

root.title("U.S.	Stock	Market	Watch")

root.geometry("1100x750")

#	Create	a	first	label	using	the	Label()	function

label	=	tk.Label(text="",	fg="Blue",	font=("Helvetica",	80))

label.pack()

#	Create	a	second	label

label2	=	tk.Label(text="",	fg="Red",	font=("Helvetica",	60))

label2.pack()

#	Set	up	tickers	and	names

tickers	=	['^DJI',	'^GSPC',	'AAPL',	'AMZN',	'TSLA']

names	=	['DOW	JONES',	'S&P500',	'Apple',	'Amazon',	'Tesla']

#	Set	up	the	oldprice	values	and	price	bounds

2	oldprice	=	[]

maxprice	=	[]

minprice	=	[]

for	i	in	range(5):

				p	=	round(float(si.get_live_price(tickers[i])),	2)

				oldprice.append(p)

				maxprice.append(p	*	1.05)

				minprice.append(p	*	0.95)

				if	i	<=	1:

								print_say(f'The	latest	value	for	{names[i]}	is	{p}!')

				else:

								print_say(f'The	latest	stock	price	for	{names[i]}	is	{p}	

dollars!')

				

#	Define	the	stock_watch()	function

3	def	stock_watch():

				#	Declare	global	variables	

				global	oldprice,	maxprice,	minprice

				#	Obtain	live	information	about	the	DOW	JONES	index	from	

Yahoo

		4	p1	=	round(float(si.get_live_price("^DJI")),	2)

				m1	=	f'DOW	JONES:	{p1}'

				#	Obtain	live	information	about	the	SP500	index	from	Yahoo	

				p2	=	round(float(si.get_live_price("^GSPC")),	2)

				m2	=	f'S&P500:	{p2}'

				#	Obtain	live	price	information	for	Apple	stock	from	Yahoo

				p3	=	round(float(si.get_live_price("AAPL")),	2)

				m3	=	f'Apple:	{p3}'

				#	Obtain	live	price	information	for	Amazon	stock	from	Yahoo

				p4	=	round(float(si.get_live_price("AMZN")),	2)

				m4	=	f'Amazon:	{p4}'

				#	Obtain	live	price	information	for	Tesla	stock	from	Yahoo

				p5	=	round(float(si.get_live_price("TSLA")),	2)

				m5	=	f'Tesla:	{p5}'

				#	Put	the	five	prices	in	a	list	p

		5	p	=	[p1,	p2,	p3,	p4,	p5]

				#	Obtain	current	date	and	time	information

				tdate	=	arrow.now().format('MMMM	DD,	YYYY')

				tm	=	arrow.now().format('hh:mm:ss	A')

				#	Put	the	date	and	time	information	in	the	first	label

				label.configure(text=tdate	+	"\n"	+	tm)

				#	Put	all	the	five	messages	on	the	stock	market	in	the	second	

label

				label2.configure(text=m1	+\

									"\n"	+	m2	+	"\n"	+	m3	+	"\n"	+	m4	+	"\n"	+	m5,	

justify=tk.LEFT)

				#	If	there	is	update	in	the	market,	announce	it

		6	for	i	in	range(5):

								if	p[i]	!=	oldprice[i]:

												oldprice[i]	=	p[i]

												if	i	<=	1:

																print_say(f'The	latest	value	for	{names[i]}	is	

{p[i]}!')

												else:

																print_say\

																(f'The	latest	stock	price	for	{names[i]}	is	

{p[i]}	dollars!')

				#	If	price	goes	out	of	bounds,	announce	it

		7	for	i	in	range(5):

								if	p[i]	>	maxprice[i]:

												print_say(f'{names[i]}	has	moved	above	the	upper	

bound!')

								if	p[i]	<	minprice[i]:

												print_say(f'{names[i]}	has	moved	below	the	lower	

bound!')

				#	Call	the	stock_watch()	function

		8	root.after(120000,	stock_watch)

#	Call	the	stock_watch()	function

stock_watch()

#	Run	the	game	loop

root.mainloop()

Listing	15-6:	Script	to	create	a	talking,	graphical	live	US	stock	market	watch

We	import	the	modules,	including	arrow	to	show	the	time	and	date	and
yahoo_fin	to	obtain	stock	price	information.	We	also	import	print_say()	from
the	local	mptpkg	package	to	make	announcements.

Starting	at	1,	we	create	the	tkinter	root	window	and	place	two	labels	in	it,	as
we	did	in	bitcoin_watch.py.	We	then	create	three	lists:	oldprice,	maxprice,	and
minprice	2.	We	use	oldprice	to	keep	track	of	the	values	of	the	two	indexes
and	the	prices	of	the	three	stocks	when	we	start	running	the	script.	The	list
maxprice	holds	the	five	upper	bounds,	5	percent	above	the	corresponding	values
in	oldprice.	Similarly,	we	define	the	five	lower	bounds	in	minprice.

The	script	then	announces	the	values	of	the	two	indexes	and	the	prices	of	the
three	stocks.	Note	that	we	put	dollars	after	the	three	stock	prices,	but	not	after
the	two	index	values	because	index	values	are	not	measured	in	dollars.

We	define	stock_watch()	at	3,	which	declares	oldprice	a	global	variable.
Every	time	the	function	is	called,	it	retrieves	the	values	we’re	interested	in	4.
We	keep	two	digits	after	the	decimal	for	all	values	and	save	them	in	a	list	p	5.

We	obtain	the	time	and	date	and	put	them	in	the	first	label.	We	put	the	values
of	the	two	indexes	and	three	stocks	in	the	second	label.	At	6,	we	check	each	of
the	five	values	for	updates,	and	we	print	and	announce	any	updates.	We	also
update	the	value	stored	in	oldprice	accordingly.

Starting	at	7,	we	check	whether	any	of	the	five	values	has	gone	out	of
bounds.	If	yes,	the	script	makes	an	announcement.	Finally,	we	use	after()	to
create	the	animation	effect	8.	The	stock_watch()	function	calls	itself	every
120,000	milliseconds,	updating	the	screen	every	two	minutes.

Here’s	the	output	from	one	interaction	with	the	script:

The	latest	value	for	DOW	JONES	is	31477.02!

The	latest	value	for	S&P500	is	3861.02!

The	latest	stock	price	for	Apple	is	124.65	dollars!

The	latest	stock	price	for	Amazon	is	3062.5	dollars!

The	latest	stock	price	for	Tesla	is	692.41	dollars!

The	latest	value	for	DOW	JONES	is	31460.43!

The	latest	value	for	S&P500	is	3859.14!

The	latest	stock	price	for	Apple	is	124.49	dollars!

The	latest	stock	price	for	Amazon	is	3062.32	dollars!

The	latest	stock	price	for	Tesla	is	690.8	dollars!

The	latest	value	for	DOW	JONES	is	31434.83!

The	latest	value	for	S&P500	is	3853.88!

The	latest	stock	price	for	Apple	is	124.26	dollars!

The	latest	stock	price	for	Amazon	is	3052.31	dollars!

The	latest	stock	price	for	Tesla	is	687.56	dollars!

In	just	a	few	minutes,	the	script	has	updated	all	five	values	three	times.	Figure
15-4	shows	the	final	screen.

Figure	15-4:	A	graphical	live	US	stock	market	watch

TRY	IT	OUT

Change	the	three	stocks	to	Microsoft	(ticker	symbol	MSFT),	Goldman	Sachs	(ticker	symbol
GS),	and	Delta	Airlines	(ticker	symbol	DAL).	Run	the	script	after	the	change.

Apply	the	Method	to	Other	Financial	Markets
We	can	apply	these	methods	to	other	financial	markets.	If	the	price	information
is	available	from	Yahoo!	Finance,	the	modification	is	minimal:	we	just	change
the	ticker	symbols	in	the	scripts.

If	the	price	information	is	not	available	from	Yahoo!	Finance,	search	online
for	a	website	that	provides	JSON	data	for	the	market	and	then	use	the	same
method	we	used	to	retrieve	the	Bitcoin	price.

TRY	IT	OUT

Modify	stock_watch.py	to	create	a	graphical	watch	for	the	Treasury	bond	rates.	The	graph
should	display	the	following	four	rates:	13-Week	Treasury	Bill	rate	(ticker	symbol	^IRX),	Five-
Year	Treasury	Bond	rate	(ticker	symbol	^FVX),	Ten-Year	Treasury	Bond	rate	(ticker	symbol
^TNX),	and	30-Year	Treasury	Bond	rate	(ticker	symbol	^TYX).

Summary
In	this	chapter,	you	first	learned	how	to	retrieve	information	from	JSON	data	and
use	it	to	create	a	graphical	Bitcoin	watch	using	the	tkinter	package.	You	obtained
the	live	Bitcoin	price	online	and	created	widgets	with	animations	in	tkinter.

With	these	skills,	you	made	a	graphical	live	market	watch	for	the	US	stock
market	with	spoken	alerts.	The	script	generates	a	graphical	display	of	two	major
US	stock	indexes	and	three	stocks	that	you’re	interested	in.	When	the	prices
change,	the	script	lets	you	know	in	a	human	voice.	The	script	also	alerts	you	if
an	index	value	or	a	stock	price	goes	outside	the	preset	bounds.

You	also	learned	how	to	apply	this	process	to	create	a	talking	graphical	market
watch	for	other	financial	markets.

End-of-Chapter	Exercises
1.	 Modify	bitcoin_price.py	to	retrieve	the	price	in	British	pounds	instead	of	US

dollars	and	as	a	string	variable	instead	of	a	floating-point	number.

2.	 Modify	tk_label.py	so	that	the	size	of	the	root	window	is	850	by	160	pixels
and	the	message	in	the	label	displays	here	is	your	label.

3.	 Modify	bitcoin_tk.py	so	that	the	screen	refreshes	every	0.8	seconds.

4.	 Modify	bitcoin_watch.py	so	that	the	upper	and	lower	bounds	are	set	to	3
percent	above	and	below	the	price	when	you	start	running	the	script.

16
USE	WORLD	LANGUAGES

So	far,	we’ve	taught	Python	how	to	speak
and	listen	in	English.	But	Python	can
understand	many	other	world	languages.	In

this	chapter,	you’ll	first	teach	Python	to	talk	in	several
other	languages	with	the	modules	we’ve	been	using.	I’ll
then	introduce	a	useful	module	called	translate,	which
can	translate	one	language	to	another,	and	you’ll	use	this
to	silently	translate	languages.	Then	we’ll	add	the	speech
recognition	and	text-to-speech	features	so	you	can	speak
one	language	to	the	Python	script	and	the	script	will	say
the	translation	in	another	language	of	your	choice.
As	usual,	all	scripts	in	this	chapter	are	available	at	the	book’s	resources	page

at	https://www.nostarch.com/make-python-talk/.	Start	by	creating	the	folder
/mpt/ch16/	for	this	chapter.

NEW	SKILLS

Converting	text	to	speech	in	major	world	languages

Recognizing	speech	in	major	world	languages

Querying	Wikipedia	in	major	world	languages

Translating	in	text	and	with	voice

https://www.nostarch.com/make-python-talk/

Text	to	Speech	in	Other	Languages
To	work	with	non-English	languages,	we’ll	use	gTTS	because	it	supports	most
major	world	languages.	The	downside	to	using	gTTS	is	that	it	needs	a	separate
module	to	play	the	audio	file,	but	the	alternative	(pyttsx3)	doesn’t	support	a	wide
range	of	non-English	languages.	Here	we’ll	try	out	the	gTTS	module	with	a	few
examples.

Install	Modules
To	install	the	gTTS	module	in	Windows,	activate	the	virtual	environment
chatting	and	then	execute	the	following	command	in	the	Anaconda	prompt	and
follow	the	onscreen	instructions:

pip	install	gTTS

If	you’re	using	Mac	or	Linux,	you	should	already	have	installed	the	gTTS
module	in	Chapter	4.	However,	Google	Translate	has	been	known	to	make
significant	changes	to	the	module,	so	you	should	upgrade	to	the	latest	version	by
running	the	following	command	in	a	terminal	with	the	virtual	environment
chatting	activated:

pip	install	--upgrade	gTTS

You	also	need	to	install	the	pydub	module	to	play	audio	files.	You	need	to	do
this	step	no	matter	whether	you’re	using	Windows,	Mac,	or	Linux.	Execute	the
following	two	lines	of	code	in	the	Anaconda	prompt	(Windows)	or	a	terminal
(Mac	or	Linux),	with	the	chatting	virtual	environment	activated:

conda	install	-c	conda-forge	pydub

conda	install	-c	conda-forge	ffmpeg

Follow	the	instructions	all	the	way	through.

Convert	Text	to	Speech	in	Spanish
The	script	speak_spanish.py	in	Listing	16-1	shows	how	the	gTTS	module
converts	written	Spanish	into	spoken	Spanish.	Enter	these	lines	of	code	in	your
Spyder	editor	and	save	the	script	as	speak_spanish.py	in	your	chapter	folder.

from	io	import	BytesIO

from	gtts	import	gTTS

from	pydub	import	AudioSegment

from	pydub.playback	import	play

#	Convert	text	to	speech	in	Spanish

tts	=	gTTS(text='Buenos	días',lang='es')

#	Create	a	temporary	file	

voice	=	BytesIO()

#	Save	the	voice	output	as	an	audio	file

tts.write_to_fp(voice)

#	Play	the	audio	file

voice.seek(0)

play(AudioSegment.from_mp3(voice))

Listing	16-1:	Script	to	convert	written	Spanish	to	spoken	Spanish

We	first	import	the	modules,	including	gTTS	and	pydub,	that	will	play	the
audio	file.

Next,	we	use	the	gTTS()	function	to	convert	the	Spanish	phrase	Buenos	días
to	spoken	Spanish.	The	phrase	can	be	literally	translated	to	Good	day.	The	first
argument	to	gTTS()	specifies	which	phrase	to	convert,	and	the	second	specifies
what	language	to	use.	In	this	case,	we	use	es,	which	stands	for	Español,	or
Spanish	(see	Table	16-1	for	a	list	of	language	codes).

The	script	generates	a	temporary	file	voice	by	using	the	BytesIO()	function	in
the	io	module.	If	you	instead	used	a	fixed	filename	(such	as	myfile.mp3),	the
script	may	prevent	you	from	overwriting	the	file	when	you	rerun	it	and	can
crash.	By	using	a	temporary	file	each	time	you	run	the	script,	you	avoid	a	crash.

Finally,	we	save	the	voice	output	as	an	audio	file	in	the	temporary	file	voice
we	just	created.	Then	we	play	the	audio	file	by	using	the	pydub	module.	Run	the
script	to	hear	Python	say	“Buenos	días”	in	Spanish.

Support	Text	to	Speech	in	Other	Languages
The	gTTS	module	can	convert	text	to	speech	in	most	major	languages.	Table	16-
1	provides	an	incomplete	list	of	the	languages	that	the	module	supports,
followed	by	the	code	used	in	the	gTTS()	function.

Table	16-1:	Major	World	Languages	and	the	Corresponding	Code	in	the	gTTS	Module

Language	name Language	code
Arabic ar

Chinese zh

Dutch nl

English en

French fr

German de

Italian it

Japanese ja

Korean ko

Portuguese pt

Russian ru

Spanish es

You	can	find	a	more	comprehensive	list	at	https://cloud.google.com/speech-to-
text/docs/languages/.

NOTE

Earlier	versions	of	the	gTTS	module	provided	different	accents	or
dialects	within	a	language.	For	example,	while	the	code	es	means
Spanish,	es-es	means	Spanish	from	Spain	and	es-mx	means	Spanish
from	Mexico.	Google	Translate	has	since	deprecated	this	feature.	If	you
get	an	error	message	by	using	accents	or	dialects	within	a	language,	be
sure	to	use	only	the	two-letter	language	code.

Next,	you’ll	create	a	script	to	choose	the	language	you	want.	After	that,	you’ll
ask	the	script	to	translate	a	phrase	from	text	to	spoken	language.

Convert	Text	to	Speech	in	World	Languages
The	script	speak_world_languages.py	in	Listing	16-2	shows	you	how	to	convert
text	to	speech	in	several	major	world	languages.

from	io	import	BytesIO

from	gtts	import	gTTS

from	pydub	import	AudioSegment

https://cloud.google.com/speech-to-text/docs/languages/

from	pydub.playback	import	play

#	Create	a	dictionary	of	languages	and	the	corresponding	codes

1	lang_abbre	=	{"english":"en",

												"chinese":"zh",

												"spanish":"es",

												"french":"fr",

												"japanese":"ja",

												"portuguese":"pt",

												"russian":"ru",

												"korean":"ko",

												"german":"de",

												"italian":"it"}

2	lang	=	input("What	language	do	you	want	to	use?\n")

phrase	=	input("What	phrase	do	you	want	to	convert	to	voice?\n")

#	Convert	text	to	speech

tts	=	gTTS(text=phrase,lang=lang_abbre[lang])

#	Create	a	temporary	file	

voice	=	BytesIO()

#	Save	the	voice	output	as	an	audio	file

tts.write_to_fp(voice)

#	Play	the	audio	file

voice.seek(0)

play(AudioSegment.from_mp3(voice))

Listing	16-2:	Script	to	convert	written	language	to	spoken	language

We	create	a	dictionary	lang_abbre,	which	maps	different	foreign	languages	to
the	corresponding	codes	in	the	gTTS	module	1.	The	script	then	asks	what
language	you	want	to	use.	You	can	type	in	your	choice	in	the	IPython	console
2.	Then	type	in	the	phrase	you	want	to	convert	to	voice	at	the	prompt.

The	script	converts	your	phrase	into	an	audio	file	and	saves	it	in	the	temporary
file	voice.	Then	it	plays	the	audio	file	by	using	the	pydub	module.

The	following	is	an	interaction	with	the	script,	with	my	text	input	in	bold:

What	language	do	you	want	to	use?

chinese

What	phrase	do	you	want	to	convert	to	voice?

,?

I	first	chose	the	language	Chinese	and	then	typed	in	the	text	,? ,	which	is	the

Chinese	phrase	for	Hi,	how	are	you?	After	running	the	script,	I	heard	Python
speaking	Chinese.

TRY	IT	OUT

Run	speak_world_languages.py	to	speak	and	understand	a	language	of	your	choice.
Convert	a	phrase	from	text	to	speech.	If	the	language	of	your	choice	is	not	in	the	dictionary
lang_abbre,	add	it	to	the	script	(consult	Table	16-1	for	the	language	code).

Speech	Recognition	in	Major	World	Languages
The	speech	recognition	module	we’ve	used	throughout	this	book	is	able	to
recognize	other	major	world	languages	as	well.	We	just	need	to	let	the	script
know	which	language	we	want	to	use.

We’ll	use	Japanese	as	an	example	to	illustrate	how	it	works.	The	script
sr_japanese.py	in	Listing	16-3	recognizes	spoken	Japanese	and	converts	your
voice	into	written	text.

import	speech_recognition	as	sr

#	Initiate	speech	recognition

speech	=	sr.Recognizer()

#	Use	it	to	capture	spoken	Japanese	

print('Python	is	listening	in	Japanese...')

with	sr.Microphone()	as	source:

				speech.adjust_for_ambient_noise(source)

				try:

								audio	=	speech.listen(source)

						1	my_input	=	speech.recognize_google(audio,	language="ja")

								print(f"you	said:	{my_input}")				

				except	sr.UnknownValueError:

								pass

Listing	16-3:	Speech	recognition	in	Japanese

We	first	import	the	speech	recognition	module.	Then	we	initiate	speech
recognition	by	using	the	Recognizer()	function.	The	script	prints	out	the
message	Python	is	listening	in	Japanese	to	prompt	you	to	speak	Japanese
into	the	microphone.	We	use	the	adjust_for_ambient_noise()	function	to

reduce	the	influence	of	any	ambient	noise	on	your	voice	input.

At	1,	we	specify	Japanese	by	passing	language="ja"	in	the
recognize_google()	function.	Recall	from	Chapter	3	that	recognize_google()
uses	the	Google	Web	Speech	API;	this	is	in	contrast	to	other	methods	such	as
recognize_bing(),	which	uses	the	services	of	Microsoft	Bing	Speech,	or
recognize_ibm(),	which	uses	the	services	of	IBM	Speech	to	Text.	The	script
then	prints	out	your	voice	input	in	Japanese.

Here’s	my	output	from	interacting	with	the	computer:

Python	is	listening	in	Japanese...

you	said:	

I	said	into	the	microphone	“Thank	you”	in	Japanese.	The	script	correctly
captures	the	phrase	and	prints	it	out.

You	can	easily	modify	sr_japanese.py	by	replacing	language="ja"	(and	the
appropriate	language	titles	in	the	prompts)	with	the	language	of	your	choice	so
that	you	can	interact	with	the	computer	in	another	language.	The	list	of	world
languages	and	their	corresponding	codes	can	be	found	at
https://www.science.co.il/language/Locale-codes.php.

TRY	IT	OUT

Modify	sr_japanese.py	to	use	a	language	of	your	choice.	Then	run	the	script	and	say	“Good
morning”	into	the	microphone	to	check	whether	the	output	is	correct.

A	Talking	Wikipedia
Wikipedia	supports	most	major	world	languages,	detailed	at
https://en.wikipedia.org/wiki/List_of_Wikipedias.	In	Chapter	5,	we	created	a
talking	Wikipedia	in	English.	We’ll	build	a	version	you	can	adapt	to	work	with
any	major	language.	Listing	16-4	uses	Chinese.	Enter	the	following	code	into
your	Spyder	editor	and	save	it	as	wiki_world_languages.py.

from	io	import	BytesIO

https://www.science.co.il/language/Locale-codes.php.
https://en.wikipedia.org/wiki/List_of_Wikipedias

import	speech_recognition	as	sr

from	gtts	import	gTTS

from	pydub	import	AudioSegment

from	pydub.playback	import	play

import	Wikipedia

from	mptpkg	import	print_say

#	Create	a	dictionary	of	languages	and	the	corresponding	codes

lang_abbre	=	{"english":"en",

												"chinese":"zh",

												"spanish":"es",

												"french":"fr",

												"japanese":"ja",

												"portuguese":"pt",

												"russian":"ru",

												"korean":"ko",

												"german":"de",

												"italian":"it"}

Lang	=	input("What	language	do	you	want	to	use?\n")

#	Initiate	speech	recognition

speech	=	sr.Recognizer()

#	Request	a	query	in	a	specified	language

1	print_say(f"Say	what	you	want	to	know	in	{lang}...")

#	Capture	your	voice	query	in	the	language	of	your	choice

2	with	sr.Microphone()	as	source:

				speech.adjust_for_ambient_noise(source)

				while	True:

								try:

												audio	=	speech.listen(source)

												my_input	=	speech.recognize_google(audio,	

language=lang_abbre[lang])

												break

								except	sr.UnknownValueError:

												print_say("Sorry,	I	cannot	understand	what	you	

said!")

#	Print	out	what	you	said

3	print(f"you	said:	{my_input}")

#	Obtain	answer	from	Wikipedia	and	print	out

wikipedia.set_lang(lang_abbre[lang])

Ans	=	wikipedia.summary(my_input)[0:200]

print(ans)

#	Convert	text	to	speech	in	the	language	of	your	choice

4	tts	=	gTTS(text=ans,lang=lang_abbre[lang])

#	Create	a	temporary	file	

Voice	=	BytesIO()

#	Save	the	voice	output	as	an	audio	file

tts.write_to_fp(voice)

#	Play	the	audio	file

voice.seek(0)

play(AudioSegment.from_mp3(voice))

Listing	16-4:	A	talking	Wikipedia	in	major	world	languages

We	import	the	modules,	including	the	wikipedia	module	we	used	in	Chapter	5.
The	dictionary	lang_abbre	maps	different	foreign	languages	to	the
corresponding	codes	in	the	gTTS	module.	We’ll	also	use	the	language	codes	in
the	speech_recognition	module	and	the	wikipedia	module.

The	script	then	asks	what	language	you	want	to	use	1.	You	can	type	in	your
choice	in	the	IPython	console.	Then	speak	your	query	into	the	microphone	in	the
language	you	chose	2.	The	script	captures	the	voice	input,	converts	it	to	written
text,	and	stores	it	in	my_input.

NOTE

While	the	three	modules—gTTS,	speech_recognition,	and	wikipedia
—share	the	same	digit	language	code	for	most	languages,	there	could	be
exceptions.	Double-check	that	the	language	of	your	choice	has	correct
codes	in	all	three	modules.

The	script	then	prints	your	query	3.	After	it	does	so,	we	set	the	language	of
Wikipedia	to	the	language	of	your	choice.	We	then	send	the	query	to	Wikipedia
and	print	the	result.	Finally,	we	convert	the	answer	to	speech	and	let	the	script
say	it	in	a	human	voice	4.

Here	is	the	output	from	an	interaction	with	the	script,	with	my	written	and
voice	inputs	in	bold:

What	language	do	you	want	to	use?

chinese

Say	what	you	want	to	know	in	chinese...

United	States	of	America,	USA,United	States(U.S.US),

America),,5048

I	first	typed	in	chinese	as	my	choice	of	language.	Then	I	said	“United	States
of	America”	in	Chinese	into	the	microphone,	and	the	script	stored	a	short
description	of	the	United	States	in	Chinese	and	both	printed	and	spoke	it.

TRY	IT	OUT

Run	wiki_world_languages.py	to	use	your	chosen	language	and	try	it	out.	If	your	language	is
not	in	the	dictionary	lang_abbre,	modify	the	script	to	add	it.

Create	Your	Own	Voice	Translator
Now	you’ll	create	your	own	voice	translator.	When	you	speak	to	the	script	in
any	major	language,	the	script	will	translate	it	to	another	language	of	your	choice
and	speak	it	out.

We’ll	first	make	a	text	version	with	the	translate	module,	then	add	speech
recognition	and	text-to-speech	features.

A	Text-Based	Translator
We	first	need	to	install	the	translate	module,	powered	by	Google	Translate.	The
module	is	not	in	the	Python	Standard	Library,	and	we	need	to	pip	install	it.
Open	the	Anaconda	prompt	(in	Windows)	or	a	terminal	(in	Mac	or	Linux).	With
the	virtual	environment	chatting	activated,	run	the	following	command:

pip	install	translate	

Follow	the	instructions	to	finish	the	installation.

The	script	in	Listing	16-5	translates	English	to	Chinese,	and	translates	Chinese
to	English,	by	using	text	input.	Open	your	Spyder	editor	and	copy	the	following
code;	then	save	it	as	english_chinese.py	in	your	chapter	folder.

#	Import	the	Translator	function	from	the	translate	module

from	translate	import	Translator

#	Specify	the	input	and	output	languages

translator	=	Translator(from_lang="en",to_lang="zh")

#	Do	the	actual	translation

translation	=	translator.translate("hello	all")

print(translation)

#	Specify	the	input	and	output	languages

translator	=	Translator(from_lang="zh",to_lang="en")

#	Do	the	actual	translation

translation	=	translator.translate("")

print(translation)

Listing	16-5:	Translation	between	English	and	Chinese

We	first	import	the	Translator()	function	from	the	translate	module.	We
need	to	specify	the	input	language	(here,	English	from_lang="en")	and	the
output	language	(here,	Chinese	with	to_lang="zh").	We	translate	the	phrase
hello	all	from	English	to	Chinese	and	print	it.

Then	we	reverse	the	input	and	output	languages	to	translate	the	phrase		from
Chinese	to	English	and	print	it.	The	output	is	as	follows:

please	say	it	again

We	can	modify	the	input	and	output	languages	in	english_chinese.py	to	use
any	two	major	world	languages.	To	see	the	languages	supported	by	the	translate
module	and	their	corresponding	codes,	check
https://www.labnol.org/code/19899-google-translate-languages/.

A	Voice-Based	Translator
Next,	we’ll	add	speech	recognition	and	text-to-speech	functionality.	Again,	we’ll
hardcode	the	language	to	translate	to	and	from,	but	you	can	easily	adapt	this
script	to	any	supported	language.

NOTE

In	Chapter	17,	we’ll	add	a	voice	translator	functionality	to	our	ultimate
VPA,	in	which	the	script	extracts	the	language	you	want	to	use.	There
we’ll	make	the	language	choice	dynamic.

This	version	translates	English	to	Spanish	and	Spanish	to	English.	Open	your
Spyder	editor	and	copy	Listing	16-6.	Save	the	script	as	voice_translator.py	in
your	chapter	folder.

https://www.labnol.org/code/19899-google-translate-languages/

from	io	import	BytesIO

from	translate	import	Translator

import	speech_recognition	as	sr

from	gtts	import	gTTS

from	pydub	import	AudioSegment

from	pydub.playback	import	play

#	Initiate	speech	recognition

speech	=	sr.Recognizer()

#	Prompt	you	to	say	something	in	English

print('say	something	in	English')

#	Capture	spoken	English	

with	sr.Microphone()	as	source:

				speech.adjust_for_ambient_noise(source)

				try:

								audio	=	speech.listen(source)

								my_input	=	speech.recognize_google(audio,	language="en")

								print(f"you	said:	{my_input}")				

				except	sr.UnknownValueError:

								pass

#	Specify	the	input	and	output	languages

1	translator	=	Translator(from_lang="en",to_lang="es")

#	Do	the	actual	translation

translation	=	translator.translate(my_input)

2	print(translation)

#	Convert	text	to	speech	in	Spanish

tts	=	gTTS(text=translation,lang='es')

#	Create	a	temporary	file	

voice	=	BytesIO()

#	Save	the	voice	output	as	an	audio	file

3	tts.write_to_fp(voice)

#	Play	the	audio	file

voice.seek(0)

play(AudioSegment.from_mp3(voice))

#	Prompt	you	to	say	something	in	Spanish

4	print('say	something	in	Spanish')

#	Capture	spoken	Spanish	

with	sr.Microphone()	as	source:

				speech.adjust_for_ambient_noise(source)

				try:

								audio	=	speech.listen(source)

								my_input	=	speech.recognize_google(audio,	language="es")

								print(f"you	said:	{my_input}")				

				except	sr.UnknownValueError:

								pass

#	Specify	the	input	and	output	languages

Translator	=	Translator(from_lang="es",to_lang="en")

#	Do	the	actual	translation

translation	=	translator.translate(my_input)

print(translation)

#	Convert	text	to	speech	in	Spanish

tts	=	gTTS(text=translation,lang='en')

#	Create	a	temporary	file	

voice	=	BytesIO()

#	Save	the	voice	output	as	an	audio	file

tts.write_to_fp(voice)

#	Play	the	audio	file

voice.seek(0)

play(AudioSegment.from_mp3(voice))

Listing	16-6:	A	voice	translator	between	English	and	Spanish

We	first	import	all	modules.	Then	we	initiate	speech	recognition	by	using	the
Recognizer()	function.	Next,	the	script	prints	say	something	in	English	to
prompt	you	to	speak	the	English	phrase	you	want	to	translate.

The	script	captures	your	voice	input,	saves	it	in	the	variable	my_input,	and
prints	it.	At	1,	we	specify	the	input	language	as	English	and	the	output	language
as	Spanish.	We	then	translate	the	text	stored	in	my_input	to	Spanish	and	print	it
2.	After	printing	the	translation,	we	convert	the	Spanish	text	to	voice.	Finally,
we	save	the	translation	to	an	audio	file	and	play	it	3.

Starting	at	4,	we	reverse	the	input	and	output	languages.	You	can	then	speak
a	Spanish	phrase	to	translate,	and	the	computer	will	give	the	English	translation.

Here	is	the	output	from	an	interaction	with	the	script,	with	my	voice	input	in
bold:

say	something	in	English

you	said:	today	is	a	great	day

Hoy	es	un	gran	día.

say	something	in	Spanish

you	said:	uno	dos	tres

1	2	3

I	spoke	the	phrase	“Today	is	a	great	day”	in	English.	The	script	printed	and
spoke	the	Spanish	translation	Hoy	es	un	gran	día.	I	then	said	in	Spanish,	“uno,

dos,	tres.”	The	script	correctly	printed	and	spoke	the	English	translation	1	2	3.

NOTE

While	most	translations	from	the	translate	module	are	relatively
accurate,	it’s	best	to	avoid	phrases	with	multiple	meanings	that	may	lead
to	inaccurate	translations.

TRY	IT	OUT

Modify	voice_translator.py	to	change	the	language	to	another	language	of	your	choice.	Use	it
to	translate	a	phrase	to	English	and	translate	a	phrase	from	English	to	that	language.

Summary
In	this	chapter,	you	adapted	your	speaking	scripts	to	use	any	major	world
language.	Along	the	way,	you	learned	to	convert	text	to	speech	in	major	world
languages	such	as	Spanish,	Chinese,	Japanese,	French,	and	so	on.	You	also
learned	how	to	perform	speech	recognition	in	major	world	languages.	With	these
skills,	you	are	able	to	interact	with	your	computer	in	non-English	languages.

You	then	learned	how	to	install	the	translate	module,	which	can	translate	text
from	one	language	to	another.	We	combined	the	module	with	the	speech
recognition	and	text-to-speech	features	to	create	a	voice	translator.	This	is
incredibly	useful	real-world	functionality	that	can	help	make	your	deployed
applications	globally	adaptable.

17
ULTIMATE	VIRTUAL	PERSONAL

ASSISTANT

In	this	chapter,	you’ll	load	up	a	virtual
personal	assistant	(VPA)	with	the
interesting	projects	in	this	book,	like	voice-

controlled	games,	voice	translators,	voice	music
activations,	and	so	on.	You’ll	first	add	a	chatting
functionality	to	the	script	so	you	can	carry	out	a	daily
conversation	with	the	VPA.	You’ll	create	a	dictionary	of
questions	and	answers.	Whenever	your	voice	command
matches	one	of	the	questions	in	the	dictionary,	the	VPA
speaks	the	answer	from	the	dictionary.	This	enables	the
VPA	to	answer	certain	questions	in	a	very	particular	way,
instead	of	obtaining	an	answer	from	Wikipedia	or
WolframAlpha.
After	that,	you’ll	add	the	following	functionalities:

The	voice-activated	music	player	from	Chapter	5

The	voice-activated	NPR	News	Now	from	Chapter	6

The	voice-activated	radio	functionality	from	Chapter	6

The	voice-activated	Connect	Four	game	from	Chapter	13	(and	the	tic-tac-toe
game	from	the	exercises)

Stock	price	functionality	that	lets	you	find	out	the	latest	price	of	US	stocks
and	their	index	values	from	Chapter	15

Translator	functionality	that	renders	English	phrases	in	any	major	world
language	in	Chapter	16

The	whole	idea	of	a	VPA	is	its	convenience,	so	we’ll	make	adjustments	in
these	projects	so	that	all	added	functionalities	are	100	percent	hands-free.	After	a
functionality	is	finished,	the	VPA	will	go	back	to	the	main	menu	and	wait	for
your	voice	command.

As	usual,	all	scripts	in	this	chapter	are	available	at	the	book’s	resources	page,
https://www.nostarch.com/make-python-talk/.	Start	by	creating	the	folder
/mpt/ch17/	for	this	chapter.

NEW	SKILLS

Creating	a	chatting	functionality

Reading	JSON	data	saved	in	a	JSON	file

Modularizing	six	versions	of	tic-tac-toe	or	Connect	Four

Understanding	the	difference	between	naming	and	calling	a	function

Adapting	the	functionality	of	existing	projects	so	your	VPA	is	100	percent	hands-free

An	Overview	of	the	Final	VPA
Let’s	have	a	look	at	the	complete	script	of	our	final	VPA.	I’ll	then	explain	its
individual	functionalities	one	by	one.

First	you	need	to	download	several	local	module	files.	From	the	book’s
resources	page	(https://www.nostarch.com/make-python-talk/),	find	the	following
files	from	the	/mpt/mptpkg/	directory:	mymusic.py,	mynews.py,	myradio.py,
myttt.py,	myconn.py,	mystock.py,	and	mytranslate.py.	Put	them	in	the	same
directory	as	your	self-made	local	package	files	(refer	to	Chapter	5	for
instructions).	Make	sure	to	place	them	in	the	package	folder	/mpt/mptpkg/
instead	of	the	chapter	folder	/mpt/ch17/.	Later	in	this	chapter,	I’ll	explain	the
purpose	of	these	files.

Next,	open	__init__.py	from	/mpt/mptpkg/.	You	began	this	file	in	Chapter	5

https://www.nostarch.com/make-python-talk/
https://www.nostarch.com/make-python-talk/

and	modified	it	in	Chapters	7	and	8,	so	it	should	currently	look	something	like
this:

from	.mysr	import	voice_to_text

from	.mysay	import	print_say

--snip--

from	.myknowall	import	know_all

Add	the	seven	lines	of	code	in	Listing	17-1	to	the	end	of	__init__.py.

from	.mymusic	import	music_play,	music_stop

from	.mynews	import	news_brief,	news_stop

from	.myradio	import	live_radio,	radio_stop

from	.myttt	import	ttt

from	.myconn	import	conn

from	.mystock	import	stock_market,	stock_price

from	.mytranslate	import	voice_translate

Listing	17-1:	Importing	functions	from	local	modules	to	the	local	package

This	code	imports	the	11	functions	(music_play(),	music_stop(),	and	so	on)
from	the	seven	modules	to	the	local	package	so	you	can	later	import	them	at	the
package	level.

Open	the	script	vpa.py	from	Chapter	8	and	add	the	highlighted	parts	in	Listing
17-2.	Save	the	new	script	as	vpa_final.py.	You	can	also	download	the	script	from
the	book’s	resources.

import	random

import	json

#	Ensure	the	following	functions	are	imported	in	

/mpt/mptpkg/__init__.py

from	mptpkg	import	voice_to_text,	print_say,	wakeup,	timer,\

alarm,	joke,	email,	know_all,	music_play,	music_stop,\

news_brief,	news_stop,	live_radio,	radio_stop,	ttt,\

conn,	stock_price,	stock_market,	voice_translate

#	Open	chats.json	and	put	it	in	a	dictionary

with	open('chats.json','r')	as	content:

				chats	=	json.load(content)

#	Put	the	script	in	standby

while	True:

--snip--

								#	The	script	goes	back	to	standby	if	you	choose

								if	"back"	in	inp	and	"stand"	in	inp:

												print_say('OK,	back	to	standby,	let	me	know	if	you	

need	help!')

												break

								#	Activate	chatting	

								elif	inp	in	list(chats.keys()):

												print_say(random.choice(chats[inp]))

												continue		

								#	Activate	music	

								elif	"music	by"	in	inp:

												music_play(inp)

												#	Say	stop	to	stop	the	music	anytime

												while	True:

																background	=	voice_to_text().lower()

																if	"stop"	in	background:

																				music_stop()

																				break

																else:

																				continue

								#	Activate	news	

								elif	"npr	news"	in	inp:

												news_brief()

												#	Say	stop	to	stop	the	news	anytime

												while	True:

																background	=	voice_to_text().lower()

																if	"stop"	in	background:

																				news_stop()

																				break

																else:

																				continue

								#	Activate	the	radio

								#	Put	chromedriver.exe	in	the	same	folder	as	this	script			

								elif	"live	radio"	in	inp:

												live_radio()

												#	Say	stop	to	stop	the	radio	anytime

												while	True:

																background	=	voice_to_text().lower()

																if	"stop"	in	background:

																				radio_stop()

																				break

																else:

																				continue

								#	Activate	the	tic-tac-toe	game

								elif	"tic"	in	inp	and	"tac"	in	inp	and	"toe"	in	inp:

												ttt()

												continue

								#	Activate	the	Connect	Four	game

								elif	"connect"	in	inp	and	('4'	in	inp	or	'four'	in	inp):

												conn()

												continue

								#	Activate	the	stock	price	functionality

								elif	"stock	price	of"	in	inp:

												stock_price(inp)

												continue

								#	Get	market	indexes

								elif	"stock	market"	in	inp:

												stock_market()

												continue

								#	Activate	the	voice	translator

										elif	"how	to	say"	in	inp	and	"	in	"	in	inp:

												voice_translate(inp)

												continue

								#	Activate	the	timer	

								elif	"timer	for"	in	inp	and	("hour"	in	inp	or	"minute"	in	

inp):

												timer(inp)

												continue

--snip--

Listing	17-2:	Your	final	VPA

We	first	import	the	functions	voice_to_text(),	print_say(),	wakeup(),	and
so	on	from	the	local	package	mptpkg.	We	already	imported	these	functions	in
__init__.py	from	the	local	modules	to	the	local	package	mptpkg,	so	here	we
import	the	functions	at	the	package	level	directly.	Further,	since	the	custom
package	mptpkg	is	installed	on	your	computer	(in	editable	mode),	the	system
knows	where	to	find	the	files,	and	there	is	no	need	to	tell	the	script	where	to
look.

We	then	add	the	functionalities	to	the	script	using	a	series	of	elif	statements.
We	start	with	the	chatting	functionality.	We’ve	prepared	eight	pairs	of	questions
and	answers	and	put	them	in	the	dictionary	chats.	If	your	voice	input	matches
one	of	the	eight	questions,	the	chatting	functionality	is	activated,	and	your	VPA
will	speak	the	corresponding	answer	from	chats.

The	music	functionality	is	activated	by	the	phrase	music	by.	The	script	will
retrieve	the	artist’s	name	you	speak	after	saying	“Music	by	.	.	.”	and	will	play	a
random	song	by	that	artist.

The	news	functionality	is	activated	by	the	phrase	NPR	news.	The	script	will

extract	and	play	the	audio	file	of	the	latest	news	brief	from	NPR	News	Now.	You
can	say	“Stop”	to	stop	the	news,	and	the	script	will	go	back	to	the	main	menu
and	ask,	“How	may	I	help	you?”

The	radio	functionality	is	activated	by	the	phrase	live	radio.	The	script	will
play	streaming	audio	from	an	online	radio	station.	You	can	say	“Stop”	anytime
to	return	to	the	main	menu.

The	tic-tac-toe	functionality	is	activated	by	the	words	tic,	tac,	and	toe
together.	A	game	board	will	appear	on	the	screen,	and	before	the	game	starts,
you	can	choose	to	play	first	or	second	as	well	as	against	a	person,	a	simple
computer,	or	a	smart	computer.

The	Connect	Four	functionality	is	activated	by	the	words	connect	and	four
together	(or	4	in	text).	A	game	board	will	appear	on	the	screen,	and	you	can
choose	to	play	first	or	second	as	well	as	against	a	person,	a	simple	computer,	or	a
smart	computer.

The	stock	price	functionality	is	activated	by	the	phrase	stock	price	of.	The
script	will	extract	the	company	name	you	speak	after	“Stock	price	of	.	.	.”	and
tell	you	the	latest	price.

The	stock	market	functionality	is	activated	by	the	phrase	stock	market.	The
script	will	tell	you	the	values	of	the	major	indexes	of	the	US	stock	market.

The	voice	translator	functionality	is	activated	by	the	phrase	how	to	say
together	with	the	word	in.	The	script	will	extract	the	English	phrase	you	want	to
translate	and	the	foreign	language	into	which	to	translate	it,	then	give	you	the
translation	aloud.

Let’s	look	at	the	individual	functionalities	one	by	one	in	detail.

The	Chatting	Functionality
This	chatting	functionality	is	new.	It	will	allow	the	VPA	to	provide	a	predefined
answer	that	you	specify	in	the	code,	instead	of	an	answer	from	Wikipedia	or
WolframAlpha.	We’re	building	a	simple	chat	bot	with	only	eight	questions,	but
interested	readers	can	use	the	principles	here	to	create	a	more	sophisticated
chatting	functionality	with	more	questions	and	answers.	It	might	also	be
interesting	to	extend	this	functionality	with	artificial	intelligence.

We’ll	create	a	dictionary	of	questions	and	answers.	Enter	the	text	in	Listing
17-3	and	save	it	as	the	file	chats.json	in	/mpt/ch17/.	These	are	our	question-

response	pairs.

{

"how	are	you":["i	am	good","i	am	fine"],

"who	are	you":["i	am	a	Python	script","i	am	a	computer	script"],

"what	are	your	hobbies":["a	script	doesn't	have	hobbies"],

"what's	your	favorite	color":["blue","white"],

"hi":["hi","hello"],

"hello":["hello","hi"],

"what	can	you	do":["lots	of	things,	try	me"],

"how	old	are	you":["a	script	doesn't	have	age",

"good	question,	I	don't	really	know	the	answer	to	that"]}

Listing	17-3:	The	eight	pairs	of	questions	and	answers	in	the	chatting
functionality

The	file	is	in	JSON	format,	meaning	it	can	be	shared	among	different	script
languages.

To	make	the	chatting	functionality	more	interesting,	we’ve	prepared	multiple
answers	to	some	questions.	Python	will	read	the	JSON	file	and	load	the	data	into
a	dictionary	object.	The	values	are	all	Python	lists,	and	the	script	will	randomly
select	an	answer	from	the	list.	For	example,	if	the	question	is	who	are	you,	the
answer	will	be	either	i	am	a	Python	script	or	i	am	a	computer	script.

Let’s	zoom	in	on	the	parts	in	vpa_final.py	relevant	to	the	chatting
functionality:

import	import	random

import	json

--snip--

with	open('chats.json',	'r')	as	content:

				chats	=	json.load(content)

--snip--

								#	Activate	chatting	

						1	elif	inp	in	list(chats.keys()):

												print_say(random.choice(chats[inp]))

												continue

--snip--

We	import	two	modules.	The	random	module	is	used	to	randomly	select	an
answer.	The	json	module	reads	the	JSON	data.	Both	modules	are	in	the	Python
Standard	Library,	so	installation	is	not	needed.

Then	we	open	chats.json	and	read	the	content	as	a	large	string	variable.	We
use	the	load()	function	in	the	json	module	to	load	it	into	the	dictionary	chats.
When	you	run	the	VPA	script,	your	voice	is	captured	and	converted	to	text	and
stored	in	the	string	variable	inp.	If	your	question	matches	one	of	the	eight
questions	in	chats,	the	chatting	functionality	is	activated	1.	Note	that
list(chats.keys())	produces	the	list	of	the	eight	keys	in	chats,	and	if	you
print	the	list,	it	looks	like	this:

["how	are	you",	"who	are	you",	"what	are	your	hobbies",	"what's	

your	favorite	

color",	"hi",	"hello",	"what	can	you	do",	"how	old	are	you"]	

The	script	uses	inp	as	the	key	to	locate	the	corresponding	value,	which	is	a	list
with	one	or	two	answers	in	it.	The	script	randomly	selects	an	answer	from	the
list	and	speaks	it	out.

Here’s	one	example	interaction,	with	my	voice	input	in	bold:

--snip--

how	may	I	help	you?

you	just	said	hello

hello

how	may	I	help	you?

you	just	said	who	are	you

i	am	a	computer	script

how	may	I	help	you?

you	just	said	what	can	you	do

lots	of	things,	try	me

how	may	I	help	you?

you	just	said	how	old	are	you

a	script	doesn't	have	age

--snip--

After	the	computer	asked,	“How	may	I	help	you?”	I	said,	“Hello”	to	the
microphone.	Since	hello	is	one	of	the	eight	questions,	the	chatting	functionality
was	activated,	and	the	computer	selected	one	of	the	two	answers	(in	this	case,
hello).

I	then	asked	three	more	questions:	Who	are	you?	What	can	you	do?	How	old
are	you?	They	all	activated	the	chatting	functionality.

TRY	IT	OUT

Run	vpa_final.py	and	ask	a	question	to	activate	the	chatting	functionality.	Then	add	two	of
your	own	question-and-answer	pairs	to	chats.json.	Run	vpa_final.py	again	and	activate	the
chatting	functionality	twice	by	asking	the	two	questions.

The	Music	Functionality
We’ll	modify	the	script	play_selena_gomez.py	from	Chapter	5	and	add	music
functionality	to	our	final	VPA.	You’ll	create	a	music	module	and	import	it	to	the
main	script.

Create	a	Music	Module
Open	the	file	mymusic.py	you	just	downloaded	from	the	book’s	resources	and
saved	in	your	local	package	folder	/mpt/mptpkg.	The	code	is	shown	in	Listing
17-4.

import	os

import	random

1	from	pygame	import	mixer

from	mptpkg	import	print_say

#	Define	a	function	to	play	music

2	def	music_play(v_inp):

				#	Extract	artist	name

				pos	=	v_inp.find("music	by	")

				v_inp	=	v_inp[pos+len('music	by	'):]

				#	Separate	first	and	last	names

				names	=	v_inp.split()

				#	Extract	the	first	name

				firstname	=	names[0]

				#	Extract	the	last	name

				if	len(names)>1:

								Lastname	=	names[1]

				#	If	no	last	name,	use	first	name	as	placeholder

				else:

								lastname	=	firstname

				#	Create	a	list	to	contain	songs	

				mysongs	=	[]

				#	If	either	first	name	or	last	name	in	the	filename,	put	in	

list

				with	os.scandir("../ch05/chat")	as	files:

								for	file	in	files:

												if	(firstname	in	file.name.lower()	or	lastname\

																in	file.name.lower())	and	"mp3"	in	file.name:

																mysongs.append(file.name)

				#	Let	you	know	if	no	song	by	the	artist

				if	len(mysongs)	==	0:

								print_say(f"I	cannot	find	any	song	by	{names}.")

				else:

								#	Randomly	select	one	from	the	list	and	play

								mysong	=	random.choice(mysongs)

								print_say(f"play	the	song	{mysong}	for	you.")

								mixer.init()

								mixer.music.load(f'../ch05/chat/{mysong}')

								mixer.music.play()

#	Define	a	function	to	stop	music

3	def	music_stop():	

				try:

								mixer.music.stop()

				except:

								print('no	music	to	stop')

Listing	17-4:	The	script	to	add	music	functionality

In	Chapter	5,	you	created	the	subfolder	/chat/	in	your	chapter	folder
/mpt/ch05/	and	saved	some	MP3	files	in	it.	Each	filename	should	contain	the
artist’s	name—for	example,	SelenaGomezWolves.mp3	or	katy_perry_roar.mp3—
so	that	the	Python	script	can	locate	it.	A	typical	song	is	about	four	minutes	long,
which	is	a	long	time	if	you’re	given	a	song	that	you	don’t	like,	so	you	also
learned	how	to	stop	the	song	while	it’s	playing.	The	playsound	and	pydub
modules	don’t	allow	the	script	to	execute	the	next	line	of	code	while	the	song	is
playing,	but	with	pygame,	the	script	does	move	to	the	next	line	of	code	while	the
song	is	playing,	allowing	you	to	stop	a	song.

NOTE

If	you	cannot	install	pygame	on	your	computer,	you	can	use	the	vlc
module,	which	also	allows	you	to	stop	the	song	while	it	is	playing.	See
Appendix	A	for	instructions	on	how	to	install	the	four	modules	that	play

audio	files:	pygame,	vlc,	playsound,	and	pydub.

At	1,	we	import	the	mixer	module	from	pygame,	which	can	play	audio	files.
At	2,	we	start	defining	the	music_play()	function,	which	takes	a	voice
command	v_inp	as	its	argument.	We	locate	the	phrase	music	by	in	the	voice
command	and	use	that	to	extract	the	artist	name.

We	use	the	split()	function	to	separate	the	first	name	and	last	name	and
associate	them	with	the	variables	firstname	and	lastname.	The	script	then	goes
into	the	appropriate	folder	and	selects	a	song	with	the	artist’s	first	name	or	last
name	to	play.	Note	here	that	we	use	../ch05/chat	to	access	the	subfolder	/chat
in	the	parallel	folder	/mpt/ch05.

We	also	define	a	music_stop()	function,	which	will	stop	the	music	playing
3.	We	use	try	and	except	here	in	case	the	script	misunderstands	your	voice
input	and	tells	you	that	no	song	by	the	artist	can	be	found.	If	that	happens,	you
can	still	say	“Stop”	to	go	back	to	the	main	menu	without	crashing	the	script.

Activate	the	Music	Functionality
Next,	you’ll	add	the	music	module	to	the	final	VPA.	Here’s	the	part	of
vpa_final.py	that’s	relevant	for	the	music	functionality:

--snip--

from	mptpkg	import	music_play,	music_stop

--snip--

								#	Activate	music	

						1	elif	"music	by"	in	inp:

												music_play(inp)

												#	Say	stop	to	stop	the	music	any	time

										2	while	True:

																background	=	voice_to_text().lower()

																if	"stop"	in	background:

																				music_stop()

																				break

																else:

																				continue

--snip--

We	import	music_play()	and	music_stop(),	which	you	just	created,	and
then	check	for	the	activation	phrase	music	by	1.	Once	activated,	the

music_play()	function	is	called,	with	your	voice	input	taken	as	the	argument.

While	the	music	is	playing,	the	script	continues	to	execute	the	next	line	of
code,	which	starts	an	infinite	loop	listening	for	your	voice	input	in	the
background	2.	Any	detected	voice	input	is	converted	to	the	variable
background.	If	the	word	stop	is	detected,	the	music_stop()	function	is	called.	If
the	word	stop	isn’t	detected,	the	script	goes	to	the	next	iteration	and	continues
listening	for	background	voice	input.

WARNING

Make	sure	to	keep	your	speaker	volume	relatively	low.	If	it’s	too	high,	the
music	will	drown	out	your	voice	input,	and	it	will	be	hard	for	the	script
to	pick	up	your	command	and	stop	the	music.

Here’s	an	example	interaction	with	the	music	functionality,	with	my	voice
input	in	bold:

--snip--

how	may	I	help	you?

you	just	said	play	music	by	katy	perry

play	the	song	KatyPerry-	Hey	Hey	Hey.mp3	for	you

After	about	one	minute	of	that	tune,	I	said,	“Stop	playing.”	The	music	stopped
playing,	and	the	script	went	back	to	the	main	menu	and	asked,	“How	may	I	help
you?”

NOTE

Even	after	the	song	finishes	playing,	you	need	to	say	“Stop”	to	go	back
to	the	main	menu.	If	the	script	misunderstands	your	voice	input	and	tells
you	that	no	song	by	the	artist	can	be	found,	you	also	need	to	say	“Stop”
to	go	back	to	the	main	menu.

TRY	IT	OUT

Save	several	songs	by	your	favorite	artist	in	the	subfolder	/mpt/ch05/chat.	Run	vpa_final.py

and	activate	the	music	functionality.	Stop	the	song	after	a	minute	or	so.

The	News	Brief	Module
We’ll	modify	the	script	npr_news.py	from	Chapter	6	and	add	a	news
functionality	to	our	final	VPA.	You’ll	create	a	news	module	and	import	it	to	the
main	script.

Create	a	News	Module
The	script	mynews.py	in	Listing	17-5	creates	the	news	module.	This	file	is
available	from	the	book’s	resources	and	needs	to	be	saved	in	the	local	package
directory.

from	random	import	choice

import	requests

import	bs4

1	from	pygame	import	mixer

#	Define	news_brief()	function

2	def	news_brief():

				#	Locate	the	website	for	the	NPR	news	brief

				url	=	'https://www.npr.org/podcasts/500005/npr-news-now'

				#	Convert	the	source	code	to	a	soup	string

				response	=	requests.get(url)

				response.raise_for_status()

				soup	=	bs4.BeautifulSoup(response.text,	'html.parser')

				#	Locate	the	tag	that	contains	the	mp3	files

				casts	=	soup.findAll('a',	{'class':	'audio-module-listen'})

				#	Obtain	the	weblink	for	the	mp3	file	related	to	the	latest	

news	brief

				cast	=	casts[0]['href']

				pos	=	cast.find("?")

				#	Download	the	mp3	file

		3	mymp3	=	cast[0:pos]

				x	=	choice(range(1000000))

				mymp3_file	=	requests.get(mymp3)

				with	open(f'f{x}.mp3','wb')	as	f:

								f.write(mymp3_file.content)

				#	Play	the	mp3	file

				mixer.init()

				mixer.music.load(f'f{x}.mp3')

		4	mixer.music.play()

#	Define	the	news_stop()	function

5	def	news_stop():

				try:

								mixer.music.stop()

				except:

								print('no	news	to	stop')

Listing	17-5:	The	script	to	create	a	news	functionality

At	1,	we	import	mixer	from	pygame.	We’ll	use	the	pygame	module	so	that
we	can	stop	the	news	brief	anytime.	At	2,	we	define	news_brief().	When	this
function	is	called,	the	script	goes	to	the	NPR	news	website,	extracts	the	MP3	file
associated	with	the	latest	news	brief,	and	saves	it	on	your	computer	3.	The
script	uses	music.play()	to	play	the	audio	file	4.

We	also	define	a	news_stop()	function	that	will	stop	playing	the	news	file	5.

Activate	the	News	Functionality
Let’s	add	the	functionality	you	just	created	to	the	final	VPA.	Here	are	the	parts	of
vpa_final.py	relevant	to	the	news	functionality:

--snip--

from	mptpkg	import	news_brief,	news_stop

--snip--

								#	Activate	news	

								elif	"npr	news"	in	inp:

												news_brief()

												#	Say	stop	to	stop	the	news	any	time

												while	True:

																background	=	voice_to_text().lower()

																if	"stop"	in	background:

																				news_stop()

																				break

																else:

																				continue	

--snip--

We	import	news_brief()	and	news_stop()	from	mynews.	We	check	for	the
activation	phrase	NPR	News	in	your	voice	command.	It’s	a	good	idea	to	say

“Play	NPR	News”	or	“Tell	me	the	latest	NPR	news”	instead	of	just	“NPR	news,”
because	the	first	word	or	two	may	be	cut	off	due	to	timing.	Putting	something	in
front	of	“NPR	News”	provides	a	buffer.

Once	activated,	the	news_brief()	function	is	called,	which	extracts	the	news
brief	audio	file	from	the	NRR	News	Now	website	and	plays	it	using	pygame.

While	the	news	is	broadcasting,	the	script	starts	an	infinite	loop	to	listen	for
your	voice	input	in	the	background,	listening	for	the	word	stop.	If	the	word	is
detected,	the	news_stop()	function	is	called.	Otherwise,	the	script	goes	to	the
next	iteration	and	continues	listening	for	background	commands.

As	with	to	the	music-playing	functionality,	you	need	to	keep	your	speaker
volume	low	so	you	can	stop	the	audio	by	using	voice	input.	After	the	news	brief
is	finished,	you	need	to	say	“Stop”	to	go	back	to	the	main	menu.

TRY	IT	OUT

Run	vpa_final.py	and	activate	the	news	functionality.	Say	“Stop”	when	the	news	is	finished	to
go	back	to	the	main	menu.

The	Live	Radio	Module
We’ll	modify	play_live_radio.py	from	Chapter	6	and	add	a	radio	module	to	our
final	VPA.	As	usual,	you’ll	create	the	radio	module	and	import	it	to	the	main
script.

Create	a	Radio	Module
Frist	we’ll	create	a	radio	module.	The	script	myradio.py	is	shown	in	Listing	17-6.

#	Put	chromedriver.exe	in	the	same	folder	as	vpa_final.py	

from	selenium	import	webdriver

from	selenium.webdriver.chrome.options	import	Options

1	def	live_radio():

				global	button

				chrome_options	=	Options()		

				chrome_options.add_argument("--headless")

				browser	=	webdriver.Chrome(executable_path='./chromedriver',\

																															chrome_options=chrome_options)

				browser.get("https://onlineradiobox.com/us/")

				button	=	browser.find_element_by_xpath('//*

[@id="b_top_play"]')

				button.click()

2	def	radio_stop():

				global	button

				try:

								button.click()

				except:

								print('no	radio	to	stop')

Listing	17-6:	The	script	to	create	livestreaming	radio	functionality

First,	you	need	to	put	the	file	chromedrive.exe	in	the	same	folder	as	the	VPA
script	(that	is,	in	/mpt/ch17).	At	1,	we	define	the	live_radio()	function.	We
make	button	a	global	variable	so	we	can	use	it	again	later	in	another	function.
We	use	the	headless	option,	which	provides	the	same	functionalities	as	the
regular	Chrome	browser	but	does	not	display	the	browser	window	on	the
desktop.	Then	we	define	button	as	the	play	button	on	the	online	radio	station
Online	Radio	Box.	The	button	is	clicked	via	voice	control	so	that	the	radio	starts
streaming	when	live_radio()	is	called.

At	2,	we	define	a	radio_stop()	function	that	stops	the	radio	playing.	Note
here	that	we	need	to	make	button	a	global	variable	as	well	so	that	it	can	be
modified	in	radio_stop().

Activate	the	Radio	Functionality
Next,	add	the	radio	functionality	you	just	created	to	the	final	VPA.	Here	are	the
relevant	parts	of	vpa_final.py:

--snip--

from	mptpkg	import	live_radio,	radio_stop

--snip--

								#	Activate	the	radio	

								#	Put	chromedriver.exe	in	the	same	folder	as	this	script

								elif	"live	radio"	in	inp:

												live_radio()

												#	Say	stop	to	stop	the	radio	anytime

												while	True:

																background	=	voice_to_text().lower()

																if	"stop"	in	background:

																				radio_stop()

																				break

																else:

																				continue	

--snip--

We	first	import	the	live_radio()	and	radio_stop()	functions	you	just
created	from	the	local	mptpkg	package.	We	listen	for	the	activation	phrase	live
radio.	Again,	it’s	a	good	idea	to	include	a	word	or	two	in	front	of	“live	radio”	to
provide	a	buffer.

Once	activated,	live_radio()	is	called,	which	goes	to	Online	Radio	Box	and
clicks	the	play	button	to	stream	the	audio.

While	the	radio	is	playing,	the	script	starts	an	infinite	loop	to	listen	for
background	voice	input,	which	if	detected	is	stored	in	background.	If	the	word
stop	is	detected,	radio_stop()	is	called	to	press	the	play	button	again	so	that	the
audio	stops	streaming.	Otherwise,	the	script	goes	to	the	next	iteration	and	listens
for	background	voice	commands.

TRY	IT	OUT

Run	vpa_final.py	and	activate	the	radio	functionality.	Stop	the	radio	after	a	minute	or	so.

The	Tic-Tac-Toe	Module
We’ll	add	a	tic-tac-toe	module	so	you	can	voice-activate	the	game	and	play	with
the	computer	100	percent	hands-free.	Here,	we	use	one	script	to	offer	six
versions	of	the	tic-tac-toe	game:	you	can	choose	to	play	against	another	person,	a
simple	computer	that	makes	random	moves,	or	a	smart	computer	that	thinks
three	steps	ahead	(recall	Chapter	13).	You	can	also	choose	to	go	either	first	or
second.

You’ll	create	a	tic-tac-toe	module	and	import	it	to	the	main	script.

Create	a	Tic-Tac-Toe	Module
First	we’ll	create	a	local	tic-tac-toe	module.	The	script	myttt.py	is	based	on	the
scripts	ttt_hs.py	in	Chapter	10	and	ttt_think.py,	which	is	the	answer	to	question

#5	in	the	end-of-chapter	exercises	in	Chapter	13	and	is	available	at	the	book’s
resources	website.	I	highlight	the	key	parts	of	myttt.py	in	Listing	17-7.

--snip--

def	ttt():

				t.setup(600,600,100,200)

--snip--

				#	Define	the	smart_computer()	function

		1	def	smart_computer():

								if	turn	==	"blue":

												nonturn	=	"white"

								else:

												nonturn	=	"blue"

								#	Choose	center	at	the	first	move

								if	"5"	in	validinputs:

												return	"5"

--snip--

								for	move	in	valids:

												tooccupy	=	deepcopy(occupied)

												tooccupy[turn].append(move)

												if	win_game(tooccupy,turn)	==	True:

																winner.append(move)

--snip--

				#	Obtain	move	from	a	human	player

		2	def	person():

								print_say(f"Player	{turn},	what's	your	move?")

								return	voice_to_text().lower()

				#	Obtain	a	move	from	a	simple	computer

		3	def	simple_computer():

								return	choice(validinputs)

				#	Ask	you	for	your	choice	of	opponent

		4	while	True:

								print_say('''Do	you	want	your	opponent	to	be	a	person,

								a	simple	computer,	or	a	smart	computer?''')

								which_player	=	voice_to_text().lower()

								print_say(f"You	said	{which_player}.")

								if	'person'	in	which_player:

												player	=	person

												break

								elif	'simple'	in	which_player:

												player	=	simple_computer

												break

								elif	'smart'	in	which_player:

												player	=	smart_computer

												break

				#	Ask	if	you	want	to	play	first	or	second

		5	while	True:

								print_say("Do	you	want	to	play	first	or	second?")

								preference	=	voice_to_text().lower()

								print_say(f"You	said	{preference}.")

								if	'first'	in	preference:

												preference	=	1

												break

								elif	'second'	in	preference:

												preference	=	2

												break

				#	Add	a	dictionary	of	words	to	replace

				to_replace	=	{'number	':'',	'cell	':'',	'column	':'',

																		'one':'1',	'two':'2',	'three':'3',

																		'four':'4',	'for':'4',	'five':'5',

																		'six':'6',	'seven':'7',	'eight':'8','nine':'9'}

			#	Start	game	loop	

				while	True:

								#	See	whose	turn	to	play

						6	if	(preference+rounds)%2	==	0:

												print_say(f"Player	{turn},	what's	your	move?")

												inp	=	voice_to_text().lower()

								else:

										7	inp	=	player()

												if	inp	==	None:

																inp	=	choice(validinputs)

						8	print_say(f"Player	{turn}	chooses	{inp}.")

--snip--

								#	If	the	move	is	a	not	valid	one,	remind

						9	if	inp	not	in	validinputs:

												print_say("Sorry,	that's	an	invalid	move!")	

								#	If	the	move	is	valid,	go	ahead		

								else:

												#	Go	to	the	cell	and	place	a	dot	of	the	player's	

color

--snip--

		a	try:

								bye()

				except	Terminator:

								print('exit	turtle')

Listing	17-7:	The	script	to	create	the	tic-tac-toe	functionality

Unlike	in	previous	tic-tac-toe	versions,	here	we	don’t	use	the	messagebox

module	to	remind	us	about	wins,	ties,	and	invalid	moves	because	we	cannot	use
voice	commands	to	remove	the	message	box	from	the	screen.	You	need	to
physically	click	the	box	to	make	it	disappear.	Instead	we’ll	just	print	and
announce	wins,	ties,	and	invalid	moves.

We	define	the	ttt()	function,	which	we’ll	call	from	the	VPA	script	to	draw
the	game	board	and	ask	whether	you	want	to	play	against	a	person,	a	simple
computer,	or	a	smart	computer.	After	that,	the	script	asks	whether	you	want	to
play	first	or	second.	Once	the	game	is	over,	the	board	disappears	from	the
screen,	and	the	script	goes	back	to	the	main	menu	of	the	VPA	automatically.

In	the	ttt()	function,	we	use	the	smart_computer()	function	1,	which	is
based	on	the	best_move()	function	in	ttt_think.py	but	gives	you	the	option	to	go
first	or	second.	We	change	blue	and	white	to	turn	and	nonturn,	respectively,	so
the	computer	can	be	the	white	player	if	it	plays	second.	We	also	allow	the	smart
computer	to	occupy	cell	5	if	it’s	empty	even	if	it	plays	second	because	doing	so
increases	its	chance	of	winning	the	game.

We	then	define	the	person()	function	2,	which	allows	a	human	player	to
make	a	move	by	using	voice	commands.	Similarly,	the	simple_computer()
function	allows	the	computer	to	make	a	random	move	3.

At	4,	we	start	an	infinite	loop.	At	each	iteration,	the	script	asks	whether	you
want	to	choose	a	person,	a	simple	computer,	or	a	smart	computer	as	your
opponent.	If	your	answer	includes	person,	the	variable	player	will	be	assigned	a
value	of	person.	If	your	answer	includes	simple	or	smart,	player	will	be
assigned	a	value	of	simple_computer	or	smart_computer.	Later,	when	we	call
the	player()	function,	one	of	the	three	functions	person(),
simple_computer(),	or	smart_computer()	will	be	called,	depending	on	which
function	name	is	stored	in	player.

NOTE

Pay	attention	to	the	difference	between	a	function	name	and	the	calling
of	a	function.	For	example,	smart_computer	is	just	a	function	name,
while	smart_computer()	calls	the	function	and	executes	all	command
lines	in	it.	What	a	difference	the	parentheses	make!

At	5,	we	start	an	infinite	loop	to	determine	whether	you	want	to	play	first	or

second.	If	your	answer	includes	first,	the	variable	preference	will	be	assigned	a
value	of	1.	If	your	answer	includes	second,	preference	is	assigned	a	value	of	2.

We	then	start	the	game	loop.	At	each	iteration,	we	first	determine	whether	you
or	your	opponent	has	the	turn,	based	on	the	values	of	preference	and	rounds
6.	For	example,	if	you	choose	to	play	first,	the	value	of	preference	is	1,	and
when	the	game	starts,	the	value	of	rounds	is	1.	So	the	condition
(preference+rounds)%2==0	is	met,	and	you’ll	have	the	first	turn	at	the
beginning	of	the	game.

When	it’s	your	opponent’s	turn	7,	the	player()	function	is	called.	This
means	one	of	the	three	functions,	person(),	simple_computer(),	or
smart_computer(),	is	called,	depending	on	the	value	stored	in	the	player
variable.	The	script	announces	the	move	8.	If	the	move	is	not	valid,	the	script
asks	you	or	your	opponent	to	choose	again	9.	Otherwise,	a	piece	is	placed	on
the	game	board.

Finally,	when	the	game	ends,	we	do	not	include	the	done()	function	in	the
script.	As	you	may	recall	from	the	script	guess_letter.py	in	Chapter	12,	without
done(),	the	script	goes	to	the	bye()	function	after	the	while	loop	is	finished.
This	way,	the	game	board	will	disappear	from	the	screen	a,	and	you	can	go
back	to	the	main	menu	of	your	VPA	script.

Activate	Tic-Tac-Toe
Let’s	now	add	the	tic-tac-toe	functionality	to	the	final	VPA.	Here	are	the	relevant
parts	of	the	script	vpa_final.py:

--snip--

from	mptpkg	import	ttt

--snip--

								#	Activate	the	tic-tac-toe	game

								elif	"tic"	in	inp	and	"tac"	in	inp	and	"toe"	in	inp:

												ttt()

												continue	

--snip--

We	import	the	ttt()	function	you	just	created	from	the	local	mptpkg	package.
To	activate	the	tic-tac-toe	game,	you	need	to	include	tic,	tac,	and	toe	in	your
voice	command.	Once	the	game	is	over,	the	game	board	disappears,	and	you’ll
go	back	to	the	main	menu.

Here’s	an	example	of	one	interaction,	with	my	voice	input	in	bold:

--snip--

How	may	I	help	you?

You	just	said	play	tic-tac-toe.

Do	you	want	your	opponent	to	be	a	person,	a	simple	computer,	or	a	

smart	computer?

You	said	simple	computer.

Do	you	want	to	play	first	or	second?

You	said	first.

Player	blue,	what's	your	move?

Player	blue	chooses	5.

Player	white	chooses	9.

Player	blue,	what's	your	move?

Player	blue	chooses	number	7.

Player	white	chooses	6.

Player	blue,	what's	your	move?

Player	blue	chooses	number	three.

Congrats	player	blue,	you	won!

How	may	I	help	you?

--snip--

I	activated	the	game	by	saying	“Play	tic-tac-toe.”	I	then	chose	to	play	first
against	a	simple	computer	as	my	opponent.	I	won	the	game	by	occupying	cells	5,
7,	and	3.

TRY	IT	OUT

Run	vpa_final.py	and	activate	the	tic-tac-toe	functionality.	Play	a	game	with	the	smart
computer	and	let	the	computer	move	first.

The	Connect	Four	Module
At	this	point,	adding	the	Connect	Four	module	should	be	straightforward.	We
can	modify	the	tic-tac-toe	module	and	change	the	game	to	Connect	Four.	Then

you’ll	import	the	local	module	to	the	main	script.

Create	a	Connect	Four	Module
First	we’ll	create	a	Connect	Four	module.	The	script	myconn.py	is	based	on
conn_think_hs.py	in	Chapter	13	and	myttt.py,	which	you	just	created.	Again,	we
won’t	use	messagebox	to	remind	us	about	wins,	ties,	and	invalid	moves.	We’ll
define	a	conn()	function	so	that	when	the	function	is	called,	the	game	appears
onscreen	and	you	can	start	playing.

As	in	the	tic-tac-toe	module,	you	can	choose	who	goes	first	and	who	your
opponent	is.	We	change	red	and	yellow	to	turn	and	nonturn,	respectively,	so
that	the	computer	can	be	the	yellow	player	if	it	plays	second.

To	save	space,	I	won’t	explain	myconn.py	in	detail	here,	but	it’s	available	at
the	book’s	resources,	in	the	folder	/mpt/mptpkg.	Open	it	now	and	take	a	look;
then	go	back	to	the	main	script	for	the	VPA.

Activate	Connect	Four
Add	the	Connect	Four	module	you	just	created	to	the	final	VPA,	shown	here	in
vpa_final.py:

--snip--

from	mptpkg	import	conn

--snip--

								#	Activate	Connect	Four	

								elif	"connect"	in	inp	and	('4'	in	inp	or	'four'	in	inp):

												conn()

												continue	

--snip--

We	import	the	conn()	function	you	just	created	from	the	local	mptpkg
package.	We	listen	for	the	activation	phrase	Connect	Four	in	your	voice
command.	Note	that	the	script	may	convert	your	voice	as	either	connect	four	or
connect	4.	As	a	result,	we	need	to	use	'4'	in	inp	or	'four'	in	inp	to	cover
both	cases.

Here	is	one	sample	output	from	a	game:

--snip--

How	may	I	help	you?

You	just	said	play	connect	four.

Do	you	want	your	opponent	to	be	a	person,	a	simple	computer,	or	a	

smart	computer?

You	said	smart	computer.

Do	you	want	to	play	first	or	second?

You	said	second.

Player	red	chooses	4.

Player	yellow,	what's	your	move?

Player	yellow	chooses	number	three.

Player	red	chooses	1.

Player	yellow,	what's	your	move?

Player	yellow	chooses	number	three.

Player	red	chooses	5.

Player	yellow,	what's	your	move?

Player	yellow	chooses	number	three.

Player	red	chooses	3.

Player	yellow,	what's	your	move?

Player	yellow	chooses	number	two.

Player	red	chooses	7.

Player	yellow,	what's	your	move?

Player	yellow	chooses	number	two.

Player	red	chooses	6.

Congrats	player	red,	you	won!

How	may	I	help	you?

--snip--

I	chose	to	play	second	against	the	smart	computer.	By	connecting	four	discs
horizontally	in	columns	4,	5,	7,	and	6,	the	smart	computer	wins	the	game.

TRY	IT	OUT

Run	vpa_final.py	and	activate	the	Connect	Four	functionality.	Play	a	game	with	the	simple
computer	and	let	the	computer	play	second.

The	Stock	Price	Module

Now	let’s	add	stock	price	functionality	to	our	final	VPA,	building	the	module
and	then	importing	it.

Create	a	Stock	Market–Tracking	Module
First	we’ll	create	stock-monitoring	functionality.	The	script	mystock.py	has	the
code	shown	in	Listing	17-8.

import	requests

from	yahoo_fin	import	stock_info	as	si

from	mptpkg	import	print_say

#	Define	stock_price()	function

1	def	stock_price(v_inp):

				#	Extract	company	name

				pos	=	v_inp.find("stock	price	of")

				myfirm	=	v_inp[pos+len("stock	price	of	"):]

				#	Extract	the	source	code	from	the	website

				#	Prevent	crashing	in	case	there	is	no	result

				try:

								#	Extract	the	source	code	from	the	website

						2	url	=	

'https://query1.finance.yahoo.com/v1/finance/search?q='+myfirm

								response	=	requests.get(url)

								#	Read	the	JSON	data

								response_json	=	response.json()

								#	Obtain	the	value	corresponding	to	"quotes"

								quotes	=	response_json['quotes']

								#	Get	the	ticker	symbol

								ticker	=	quotes[0]['symbol']

								#	Obtain	real-time	stock	price	from	Yahoo

						3	price	=	round(float(si.get_live_price(ticker)),2)

								#	Speak	the	stock	price

								print_say(f"the	stock	price	for	{myfirm}	is	{price}	

dollars")

								#	If	price	is	not	found,	the	script	will	tell	you

				except:

								print_say("sorry,	I	cannot	find	what	you	are	looking	

for!")

#	Define	stock_market()	function

4	def	stock_market():

				#	Obtain	real-time	index	values	from	Yahoo

				dow	=	round(float(si.get_live_price('^DJI')),2)

				sp500	=	round(float(si.get_live_price('^GSPC')),2)

				#	Announces	the	index	values

				print_say(f"The	Dow	Jones	Industry	Average	is	{dow}.")

				print_say(f"The	S&P	500	is	{sp500}.")

Listing	17-8:	The	script	to	create	stock	market–tracking	functionality

At	1,	we	define	the	stock_price()	function,	saving	the	voice	command
v_inp	as	the	argument.	We	then	locate	the	company	name	in	your	voice
command	and	use	that	to	extract	the	ticker	symbol	of	the	firm’s	stock	2.	The
script	goes	to	Yahoo!	Finance	and	obtains	the	stock	price	based	on	the	ticker
symbol	3.	Finally,	the	script	prints	and	announces	the	stock	price.

We	also	define	stock_market()	4.	When	this	function	is	called,	it	will
retrieve	the	latest	values	of	the	Dow	Jones	Industrial	Average	and	the	S&P	500.
The	script	then	prints	and	announces	the	two	values.

Activate	the	Stock	Market–Tracking	Functionalities
Now	add	the	stock-monitoring	module	you	just	created	to	the	final	VPA.	Here
are	the	relevant	parts	of	vpa_final.py:

--snip--

from	mptpkg	import	stock_market,	stock_price

--snip--

								#	Activate	the	stock	price	functionality

								elif	"stock	price	of"	in	inp:

												stock_price(inp)

												continue

								#	Get	market	indexes

								elif	"stock	market"	in	inp:

												stock_market()

												continue

--snip--

We	first	import	the	stock_price()	and	stock_market()	functions	and	listen
for	the	activation	phrase	stock	price	of	in	your	voice	command,	such	as,	“Tell	me
the	stock	price	of	General	Motors.”	The	stock_price()	function	uses	your	voice
command	as	the	argument	and	tells	you	the	latest	price	for	the	company’s	stock.

We	then	listen	for	the	activation	phrase	stock	market	for	the	stock_market()

function.	The	script	retrieves	the	latest	values	of	the	market	indexes	and
announces	them	to	you.

The	following	is	one	interaction	with	the	stock	module,	with	my	voice	input	in
bold:

--snip--

how	may	I	help	you?

you	just	said	tell	me	the	stock	price	of	general	motors

the	stock	price	for	general	motors	is	24.39	dollars

how	may	I	help	you?

you	just	said	tell	me	about	the	stock	market

the	Dow	Jones	Industry	Average	is	26075.3

the	S&P	500	is	3185.04

how	may	I	help	you?

--snip--

TRY	IT	OUT

Run	vpa_final.py	and	find	the	latest	stock	price	of	Goldman	Sachs.	Then	find	the	values	of
the	Dow	Jones	Industrial	Average	and	S&P	500.

The	Voice	Translator	Module
We’ll	finally	add	the	translator	functionality	so	that	your	VPA	can	translate	an
English	phrase	into	a	foreign	language	of	your	choice.

Create	a	Translator	Module
First	we’ll	create	a	translator	module.	The	script	mytranslate.py	is	shown	in
Listing	17-9.

from	mptpkg	import	print_say

1	lang_abbre	=	{"english":"en",

												"chinese":"zh",

												"spanish":"es",

												"french":"fr",

												"japanese":"ja",

												"portuguese":"pt",

												"russian":"ru",

												"korean":"ko",

												"german":"de",

												"italian":"it"}

#	Import	the	platform	module	to	identify	your	OS

import	platform

#	If	you	are	using	Windows,	use	gtts

if	platform.system()	==	"Windows":	

				import	random

				

				from	translate	import	Translator

				from	gtts	import	gTTS

				from	pydub	import	AudioSegment

				from	pydub.playback	import	play

				

		2	def	voice_translate(inp):

								#	Extract	the	phrase	and	the	language	name

								ps1	=	inp.find('how	to	say')

								ps2	=	inp.rfind('	in	')

								try:

												eng_phrase	=	inp[ps1+10:ps2]

												tolang	=	inp[ps2+4:]

												translator	=	

Translator(from_lang="english",to_lang=tolang)

												translation	=	translator.translate(eng_phrase)

												tts	=	gTTS(text=translation,	lang=lang_abbre[tolang])

												print_say(f"The	{tolang}	for	{eng_phrase}	is")

												print(translation)

												x	=	random.choice(range(1000000))

												tts.save(f'file{x}.mp3')

												play(AudioSegment.from_mp3(f"file{x}.mp3"))

								except:

												print_say("Sorry,	cannot	find	what	you	are	looking	

for!")

#	If	you	are	not	using	Windows,	use	gtts-cli

if		platform.system()	==	"Darwin"	or	platform.system()	==	

"Linux":

				import	os

				from	translate	import	Translator

				from	gtts	import	gTTS

				def	voice_translate(inp):

								#	Extract	the	phrase	and	the	language	name

								ps1	=	inp.find('how	to	say')

								ps2	=	inp.rfind('	in	')

								try:

												eng_phrase	=	inp[ps1+10:ps2]

												tolang	=	inp[ps2+4:]

												translator	=	

Translator(from_lang="english",to_lang=tolang)

												translation	=	translator.translate(eng_phrase)

												print_say(f"The	{tolang}	for	{eng_phrase}	is")

												print(translation)

												tr	=	translation.replace('"','')

												ab	=	lang_abbre[tolang]

										3	os.system(f'gtts-cli	--nocheck	"{tr}"	--lang	{ab}	|	

mpg123	-q	-')

								except:

												print_say("sorry,	cannot	find	what	you	are	looking	

for!")

Listing	17-9:	The	script	to	create	a	voice	translator	functionality

We	start	by	importing	the	needed	modules.	In	particular,	we	import	platform
to	identify	your	operating	system.	At	1,	we	create	a	dictionary	lang_abbre,
which	maps	several	world	languages	to	their	language	codes	in	Google
Translate.	Listing	17-9	includes	10	languages,	and	you	can	add	more	to	the
dictionary	if	you	prefer.

If	you’re	using	Windows,	at	2,	we	start	the	definition	of	the
voice_translate()	function,	which	takes	your	voice	command	as	the	argument.
Your	voice	command	should	contain	how	to	say	and	in.	For	example,	you	can
ask,	“Python,	how	to	say	thank	you	in	Japanese?”	The	script	locates	the	positions
of	how	to	say	and	in	in	your	voice.	It	then	extracts	the	English	phrase	you	want
to	translate	and	the	target	language	and	stores	them	in	variables	eng_phrase	and
tolang,	respectively.

NOTE

While	the	string	method	find()	locates	the	position	of	the	first
occurrence	of	a	substring,	the	rfind()	method	returns	the	position	of
the	last	occurrence.	We	use	rfind('	in	')	in	this	script	in	case	you
include	the	word	in	in	the	English	phrase	you	want	to	translate,	such	as
“How	to	say	the	cat	in	the	hat	in	Spanish?”

We	then	use	the	Translator()	class	from	translate	to	translate	the	English
phrase	to	the	language	you	want	in	text.	Next,	the	script	converts	the	translation
into	voice.	It	saves	the	voice	translation	into	an	MP3	file	and	uses	the	pydub
module	to	play	it.

If	you’re	using	Mac	or	Linux,	the	process	is	similar	except	that	you	don’t	need
to	create	and	play	the	audio	file.	Instead,	we	use	the	command	line	method
gtts-cli	to	play	the	audio	file	directly	without	saving	and	retrieving	the	audio
file,	similar	to	what	we	did	in	Chapter	4	3.	Since	we	convert	a	foreign	language
to	speech,	we	need	to	add	the	--lang	option,	followed	by	the	abbreviation	for
the	language.

Activate	the	Voice	Translator
Next,	you’ll	add	the	voice	translator	module	you	just	created	to	the	final	VPA,
shown	here:

--snip--

from	mptpkg	import	voice_translate

--snip--

								#	Activate	the	voice	translator	

								elif	"how	to	say"	in	inp	and	"	in	"	in	inp:

												voice_translate(inp)

												continue

--snip--

We	import	the	voice_translate()	function	you	just	created	and	listen	for	the
activation	phrase.	Once	the	translator	functionality	is	activated,
voice_translate()	is	called,	using	your	voice	input	as	the	argument.	The
function	tells	you	the	translation	in	a	human	voice.

The	following	is	one	interaction	with	the	functionality,	with	my	voice	input	in
bold:

--snip--

how	may	I	help	you?

you	just	said	how	to	say	good	afternoon	in	japanese

the	japanese	for	good	afternoon	is	

--snip--

TRY	IT	OUT

Run	vpa_final.py	and	ask	it	how	to	say	“thank	you”	in	a	foreign	language	you	understand;
then	check	that	the	translation	is	correct.	If	the	foreign	language	is	not	in	the	script
mytranslate.py,	add	the	language	to	it.

Summary
In	this	chapter,	you	added	several	projects	created	earlier	in	the	book	to	your
VPA.	Along	the	way,	you	learned	how	to	modify	existing	projects,	modularize
them,	and	use	their	functionality	in	your	VPA.	You	learned	how	to	use	voice
control	to	activate	a	functionality	so	that	everything	is	100	percent	hands-free,
and	how	to	return	to	the	main	menu	after	the	functionality	is	finished.	You	also
efficiently	included	six	versions	of	the	tic-tac-toe	or	Connect	Four	game	in	a
single	module	by	allowing	the	script	to	ask	you	a	couple	of	questions	before	the
game	starts.	With	these	skills,	you’ll	be	able	to	create	your	own	functionalities
and	add	them	to	your	VPA.

A
INSTALL	MODULES	TO	PLAY	AUDIO

FILES

In	this	appendix,	I’ll	discuss	the	various
modules	for	playing	audio	files	in	Python.
While	there	is	no	feasible	way	to	account

for	all	the	differences	in	hardware	and	operating	system
combinations,	I	have	tested	the	instructions	in	this	book
on	a	variety	of	hardware	and	software	platforms.	In	doing
so,	I	encountered	various	problems,	and	I	want	to	help
you	avoid	those	problems.
There	are	two	types	of	modules	when	it	comes	to	playing	audio	files.	The	first

type	(which	we	can	call	blocking)	will	take	control	of	the	script	and	won’t	let
your	execution	move	to	the	next	line	of	code	until	the	audio	file	is	finished
playing.	We’ll	discuss	two	modules	in	this	category:	playsound	and	pydub.	You
need	to	make	only	one	of	them	work	for	this	book.	The	second	type	won’t	take
control	of	the	script;	it	simply	moves	on	to	the	next	line	of	code	as	soon	as	the
audio	file	starts	playing	(we	can	refer	to	this	as	non-blocking).	We’ll	look	at	two
modules	in	this	category:	vlc	and	pygame.	Similarly,	you	need	to	make	only	one
of	them	work	for	this	book.

Both	module	types	are	used	in	this	book.	The	blocking	type	is	the	most
common,	and	we	use	it	to	play	most	audio	files	in	our	scripts.	The	non-blocking
type	is	useful	when	the	audio	file	is	long	and	you	want	the	option	of	pausing	or
stopping	while	it’s	playing.	We	use	this	in	Chapter	6	in	the	script
news_brief_hs.py	and	in	the	music-playing	functionality	in	our	ultimate	VPA

script,	vpa_final.py,	in	Chapter	17	.

Next,	we’ll	discuss	how	to	install	these	four	modules	in	different	operating
systems.

Install	the	playsound	Module
The	playsound	module	is	easy	to	use	since	the	required	lines	of	code	are
minimal.	However,	installing	in	Mac	or	Linux	may	be	difficult,	even	though	I
have	managed	to	install	it	in	all	three	operating	systems.

Windows
To	install	playsound	in	Windows,	execute	the	following	command	in	an
Anaconda	prompt	with	your	chatting	virtual	environment	activated:

pip	install	playsound

Follow	the	instructions.

Mac
To	install	playsound	in	Mac,	execute	the	following	two	commands	in	a	terminal
with	your	chatting	virtual	environment	activated:

pip	install	playsound

conda	install	-c	conda-forge	pygobject

Follow	the	instructions.

Linux
To	install	playsound	in	Linux,	execute	the	following	three	commands	in	a
terminal	with	your	chatting	virtual	environment	activated:

pip	install	playsound

conda	install	–c	conda-forge	pygobject

conda	install	gstreamer

Follow	the	instructions.

Install	the	pydub	Module
The	pydub	module	is	easy	to	install	in	Mac	or	Linux.	However,	installing	in
Windows	may	be	difficult,	even	though	I	have	managed	to	install	it	in	all	three
operating	systems.	To	install	pydub,	execute	the	following	commands	in	your
Anaconda	prompt	(Windows)	or	a	terminal	(Mac	and	Linux)	with	your	chatting
virtual	environment	activated:

conda	install	–c	conda-forge	pydub

conda	install	–c	conda-forge	ffmpeg

Install	the	pygame	Module
Since	software	is	constantly	being	updated,	the	installation	instructions	are	likely
to	change.	I	suggest	you	refer	to	the	Pygame	official	website,
https://www.pygame.org/wiki/GettingStarted/,	for	instructions	if	you	get	stuck.

Windows
Execute	this	command	in	your	Anaconda	prompt	with	your	chatting	virtual
environment	activated:

pip	install	pygame

Follow	the	instructions.

Mac
Recent	versions	of	macOS	require	the	installation	of	Pygame	2.	To	install,
execute	this	command	in	a	terminal	with	your	chatting	virtual	environment
activated:

pip	install	pygame==2.0.0

Then	follow	the	instructions.

Linux
In	Linux,	execute	the	following	three	commands	in	a	terminal	with	your	chatting

https://www.pygame.org/wiki/GettingStarted/

virtual	environment	activated:

sudo	apt-get	install	python3-pip	python3-dev

sudo	pip3	install	pygame

pip	install	pygame

Install	the	vlc	Module
For	the	vlc	module,	you	need	to	have	VLC	Media	Player	installed	on	your
computer	no	matter	which	operating	system	you	are	using.	Go	to	the	VLC
website	at	https://www.videolan.org/index.html	to	download	the	software	and
install	it.

In	Linux,	you	can	install	the	app	by	running	this	command	in	a	terminal:

sudo	apt-get	install	vlc

With	your	chatting	virtual	environment	activated	in	an	Anaconda	prompt
(Windows)	or	a	terminal	(Mac	or	Linux),	install	the	Python	vlc	module	by
running	the	following	command:

pip	install	python-vlc	

Sample	Scripts	to	Test	the	Four	Modules
In	this	section,	we	provide	a	sample	script	for	each	of	the	four	modules	to	test
that	the	modules	are	running	successfully.	Again,	you	need	to	install	only	one
out	of	playsound	and	pydub	and	one	out	of	vlc	and	pygame	for	this	book.

Go	to	the	book’s	resources	and	download	the	file	hello.mp3	for	testing
purposes.	Be	sure	to	place	the	file	in	the	same	folder	as	the	testing	scripts	created
next.

The	playsound	Module
Enter	the	following	lines	of	code	in	your	Spyder	editor.	Save	the	script	as
test_playsound.py	and	run	it.	Alternatively,	you	can	download	it	from	the	book’s
resources.

https://www.videolan.org/index.html

from	playsound	import	playsound

playsound("hello.mp3")

If	successful,	you	should	hear	a	human	voice	saying,	“Hello,	how	are	you?”

The	pydub	Module
Enter	the	following	lines	of	code	in	your	Spyder	editor.	Save	the	script	as
test_pydub.py	and	run	it.	Alternatively,	you	can	download	it	from	the	book’s
resources.

from	pydub	import	AudioSegment

from	pydub.playback	import	play

play(AudioSegment.from_mp3("hello.mp3")

If	successful,	you	should	hear	a	human	voice	saying,	“Hello,	how	are	you?”

The	pygame	Module
Enter	the	following	lines	of	code	in	your	Spyder	editor.	Save	the	script	as
test_pygame.py	and	run	it.	Alternatively,	you	can	download	it	from	the	book’s
resources.

from	pygame	import	mixer

mixer.init()

mixer.music.load("hello.mp3")

mixer.music.play()

If	successful,	you	should	hear	a	human	voice	saying,	“Hello,	how	are	you?”

The	vlc	Module
Enter	the	following	lines	of	code	in	your	Spyder	editor.	Save	the	script	as
test_vlc.py	and	run	it.	Or	you	can	download	it	from	the	book’s	resources.

from	vlc	import	MediaPlayer

player=MediaPlayer("hello.mp3")

player.play()

If	successful,	you	should	hear	a	human	voice	saying,	“Hello,	how	are	you?”

B
SUGGESTED	ANSWERS	TO	END-OF-

CHAPTER	EXERCISES

This	appendix	provides	suggested	answers
to	all	end-of-chapter	exercises	in	this	book.
If	you	get	stuck	on	any	chapter	questions,

you	can	study	the	answers	here	and	move	on.	While	most
chapters	have	end-of-chapter	exercises,	Chapters	8,	16,
and	17	do	not,	but	they	do	have	a	lot	of	try-it-out
questions	to	help	you	practice.

Chapter	1
1.	 Add	this	line	of	code:

print("Here	is	a	third	message!")

2.	 Here	are	the	outputs,	respectively:

2

9

2

2.3333333333333335

1

4

20

3.	 Add	this	line	of	code:

print(55	*	234)

Chapter	2
1.	 Here	are	the	outputs:

<class	'str'>

<class	'str'>

Kentucky	Wildcats

WildcatsKentucky	

Wildcats	@	Kentucky	

WildcatsWildcatsWildcats

2.	 The	outputs	are	as	follows:

<class	'float'>

<class	'float'>

3.46

-2.4

3.0

3.	 Here	are	the	outputs:

<class	'int'>

57

0.0

4.	 The	outputs	are	shown	here:

<class	'bool'>

8<7

False

<class	'str'>

<class	'str'>

5.	 These	are	the	outputs:

-23

56

-23.0

8.0

6.	 Here	are	the	outputs:

1

0.0

False

7.	 The	outputs	are	as	follows:

False

True

True

True

8.	 Here	are	the	answers:

global:	No,	because	it’s	a	Python	keyword

2print:	No,	because	you	can’t	start	a	variable	with	a	number

print2:	Yes

_squ:	Yes

list:	No,	because	list()	is	a	Python	built-in	function

9.	 Here	is	the	output:

this	is	A1

this	is	A2

10.	 The	output	is	as	follows:

this	is	A1

this	is	A2

this	is	C1

this	is	C2

11.	 This	is	the	output:

this	is	A1

this	is	A2

this	is	B1

this	is	B2

this	is	C1

this	is	C2

12.	 The	answers	are	shown	here:

a.	

0

1

2

3

4

b.	

10

11

12

13

14

c.	

10

12

14

13.	 270

14.	 See	the	new	script	import_local_module1.py	from	the	book’s	resources.

15.	 The	range	and	the	average	of	the	grades	are	29	and	82.625,	respectively.	You
can	use	the	following	lines	of	code	to	get	the	answers:

midterm	=	[95,	78,	77,	86,	90,	88,	81,	66]

print("the	range	is",	max(midterm)-min(midterm))

print("the	average	is",	sum(midterm)/len(midterm))

16.	 The	outputs	are	as	follows:

rsity

y

University

rsity	of	Kentucky

17.	 If	email	=	John.Smith@uky.edu,	then	email.find("y")	returns	13.

18.	 The	answers	are	shown	here:

[2,	3,	5,	9]

5

3

19.	 The	outputs	are	as	follows:

["a",	"hello",	2]

[1,	"a",	"hello",	2,	"hi"]

20.	 10

21.	 (9,)

22.	 One	way	is	to	use	the	enumerate()	method	as	follows:

lst	=	[1,	"a",	"hello",	2]

newdict	=	{}

for	i,	x	in	enumerate(lst):

				newdict[i]	=	x

print(newdict)

Another	way	is	as	follows:

lst	=	[1,	"a",	"hello",	2]

newdict	=	{i:lst[i]	for	i	in	range(len(lst))}

print(newdict)

Chapter	3
1.	 Change

if	inp	==	"stop	listening":

				print('Goodbye!')

to

if	inp	==	"quit	the	script":

				print('Have	a	great	day!')

2.	 Add	the	following	to	the	end	of	the	script:

elif	"open	text"	in	inp:	

				inp	=	inp.replace('open	text	','')

				myfile	=	f'{inp}.txt)'

				open_file(myfile)

				continue

3.	 Change

import	speech_recognition	as	sr	

speech	=	sr.Recognizer()

def	voice_to_text():

				voice_input	=	""	

				with	sr.Microphone()	as	source:

								speech.adjust_for_ambient_noise(source)

								try:

												audio	=	speech.listen(source)

												voice_input	=	speech.recognize_google(audio)

								except	sr.UnknownValueError:

												pass

								except	sr.RequestError:

												pass								

								except	sr.WaitTimeoutError:

												pass

				return	voice_input	

to

from	mysr	import	voice_to_text

Make	sure	you	put	the	script	mysr.py	in	the	same	folder	as
voice_open_file.py.

Chapter	4
1.	 See	pyttsx3_adjust1.py,	shown	here:

import	pyttsx3

engine	=	pyttsx3.init()

voices	=	engine.getProperty('voices')

engine.setProperty('voice',	voices[0].id)

engine.setProperty('rate',	160)

engine.setProperty('volume',	0.8)

engine.say("This	is	a	test	of	my	speech	id,	speed,	and	

volume.")

engine.runAndWait()

2.	 See	area_hs1.py,	shown	here:

#	Put	mysr.py	and	mysay.py	in	the	same	folder	as	this	script

from	mysr	import	voice_to_text

from	mysay	import	print_say

#	Ask	the	base	length	of	the	triangle

print_say('What	is	the	base	length	of	the	triangle?')

#	Convert	the	voice	input	to	a	variable	inp1

inp1	=	voice_to_text()

print_say(f'You	just	said	{inp1}.')

#	Ask	the	height	of	the	triangle

print_say('What	is	the	height	of	the	triangle?')

#	Save	the	answer	as	inp2

inp2	=	voice_to_text()

print_say(f'You	just	said	{inp2}.')

#	Calculate	the	area

area	=	float(inp1)*float(inp2)/2

#	Print	and	speak	the	result

print_say(f'The	area	of	the	triangle	is	{area}.')

Chapter	5
1.	 Change

elif	re2	==	"too	high":

				print_say("Is	it	1?")

				while	True:

								re3	=	voice_to_text()

								print_say(f"You	said	{re3}.")

								if	re3	in	("too	high",	"that	is	right",	"too	small"):

												break

				if	re3	==	"too	small":

								print_say("It	is	2!")

								sys.exit

				elif	re3	==	"that	is	right":

								print_say("Yay,	lucky	me!")

								sys.exit

to

elif	re2	==	"too	high":

				print_say("Is	it	2?")

				while	True:

								re3	=	voice_to_text()

								print_say(f"You	said	{re3}.")

								if	re3	in	("too	high",	"that	is	right",	"too	small"):

												break

				if	re3	==	"too	high":

								print_say("It	is	1!")

								sys.exit

				elif	re3	==	"that	is	right":

								print_say("Yay,	lucky	me!")

								sys.exit		

2.	 Change

print(answer)	

to

print(answer[0:300])

3.	 Change

from	pygame	import	mixer	

to

import	platform

and	change

mixer.init()

mixer.music.load(f"./chat/{mysong}")

mixer.music.play()

to

if	platform.system()	==	"Windows":

				os.system(f"explorer	./chat/{mysong}")

elif	platform.system()	==	"Darwin":

				os.system(f"open	./chat/{mysong}")

else:

				os.system(f"xdg-open	./chat/{mysong}")

4.	 Change

and	"mp3"	in	file.name	

to

and	"wav"	in	file.name	

Chapter	6
1.	 See	parse_local2.py,	shown	here:

from	bs4	import	BeautifulSoup

textfile	=	open("UKYexample.html",	encoding='utf8')

soup	=	BeautifulSoup(textfile,	"html.parser")

ptags	=	soup.findAll("p")

atag	=	ptags[1].find("a")

print(atag['class'])

print(atag['href'])

2.	 See	scrape_live_web2.py,	shown	here:

from	bs4	import	BeautifulSoup

import	requests

url	=	'http://libraries.uky.edu'

page	=	requests.get(url)

soup	=	BeautifulSoup(page.text,	"html.parser")

div	=	soup.find('div',	class_="sf-middle")

contact	=	div.find("div",	class_="dashing-li-last")

area	=	contact.find('span',	class_="featured_area")

print(area.text)

atag	=	contact.find('span',	class_="featured_email")

print(atag.text)

3.	 See	voice_podcast.py,	shown	here:

from	io	import	BytesIO

import	requests

import	bs4

from	pygame	import	mixer

#	Import	functions	from	the	local	package

from	mptpkg	import	voice_to_text,	print_say

def	podcast():

				#	Break	a	long	url	into	multiple	lines

				url	=	('https://goop.com/the-goop-podcast/'

									'gwyneth-x-oprah-power-perception-soul-purpose/')

				#	Convert	the	source	code	to	a	soup	string

				response=requests.get(url)

				soup	=	bs4.BeautifulSoup(response.text,	'lxml')

				casts	=	soup.findAll\

				('audio',	{'class':'podcast-episode__audio-player'})

				casts	=	str(casts)

				start	=	casts.find("https")

				end	=	casts.find(".mp3")

				cast=	casts[start:end+4]

				#	Play	the	mp3	using	the	pygame	module

				mymp3	=	requests.get(cast)

				voice	=	BytesIO()

				voice.write(mymp3.content)

				voice.seek(0)

				mixer.init()

				mixer.music.load(voice)

				mixer.music.play()

while	True:

				print_say('Python	is	listening...')

				inp	=	voice_to_text().lower()

				print_say(f'you	just	said:	{inp}')

				if	inp	==	"stop	listening":

								print_say('Goodbye!')

								break

				#	If	"podcast"	in	your	voice	command,	play	podcast

				elif	"podcast"	in	inp:	

								podcast()

								#	Python	listens	in	the	background

								while	True:

												background	=	voice_to_text().lower()

												#	Stops	playing	if	you	say	"stop	playing"

												if	"stop	playing"	in	background:

																mixer.music.stop()

																break

Chapter	7
1.	 Here	is	a	script:

import	arrow

from	mptpkg	import	print_say

dt	=	arrow.now().format('MMMM	D,	YYYY')

tm	=	arrow.now().format('hh:mm:ss	A')

print_say(f'today	is	{dt},	and	the	time	now	is	{tm}.')

2.	 Change

elif	"stop"	in	voice_input:

to

elif	"quit	the	script"	in	voice_input:

Chapter	9
1.	 The	changes	are	as	follows:

import	turtle	as	t

t.Screen()

t.setup(500,400,100,200)

t.bgcolor('blue')

t.title('Modified	Screen')

t.done()	

t.bye()

2.	 Change

t.forward(200)

t.backward(300)

to

t.backward(100)

t.forward(250):

3.	 The	changes	are	as	follows:

import	turtle	as	t

t.Screen()

t.setup(600,500,100,200)

t.title('Python	Turtle	Graphics')

t.hideturtle()

t.up()

t.goto(100,100)

t.dot(60,'lightgreen')

t.goto(-100,-100)

t.dot(60,'lightgreen')

t.done()

try:

				t.bye()

except	Terminator:

				pass

4.	 Change

t.pencolor('blue')

t.pensize(5)

to

t.pencolor('red')

t.pensize(3)

5.	 The	code	is	as	follows:

import	turtle	as	t

t.Screen()

t.setup(600,500,100,200)

t.bgcolor('green')

t.title('Python	Turtle	Graphics')

t.hideturtle()

t.tracer(False)

t.pensize(6)

t.goto(200,0)

t.goto(200,100)

t.goto(0,100)

t.goto(0,0)

t.update()

t.done()

try:

				t.bye()

except	Terminator:

				pass

Chapter	10
1.	 Change

t.goto(center)

t.write(cell,font	=	('Arial',20,'normal'))

to

t.goto((center[0]-80,	center[1]-80))

t.write(cell,font	=	('Arial',15,'normal'))

2.	 Change

print(f'(x,	y)	is	({x},	{y})')

to

print(f'(x,	y)	is	({x},	{y})')

print('x+y	is	',	x+y)

3.	 Change

print('row	number	is	',	row)

to

print(f'you	clicked	on	the	point	({x},	{y})')

print('row	number	is	',	row)

4.	 Change

#	The	blue	player	moves	first

turn	=	"blue"

to

#	The	white	player	moves	first

turn	=	"white"

5.	 Delete	the	following	from	the	script:

if	'1'	in	occupied[turn]	and	'5'	in	occupied[turn]	and	'9'	in	

occupied[turn]:

				win	=	True

if	'3'	in	occupied[turn]	and	'5'	in	occupied[turn]	and	'7'	in	

occupied[turn]:

				win	=	True

Chapter	11
1.	 Change

done()

to

rownum	=	1

for	y	in	range(-250,	300,	100):

				goto(325,y)

				write(rownum,font=('Arial',20,'normal'))

				rownum	+=	1

done()

2.	 Change

sleep(0.05)

to

sleep(0.025)

3.	 Delete	the	definition	of	the	vertical4()	function	and	delete	the	following
from	the	script:

if	vertical4(x,	y,	turn)	==	True:

				win	=	True

4.	 Add	the	following	to	the	dictionary	to_replace:

'column	':'',

5.	 See	conn_hs_2player.py	at	https://nostarch.com/make-python-talk/.

https://nostarch.com/make-python-talk/

Chapter	12
1.	 Change

coins[i].goto(-100	+	50	*	i,	0)

to

coins[i].goto(-100	+	50	*	i,	-10)

2.	 Change

coins[-(i+1)].hideturtle()

to

coins[i].hideturtle()

3.	 ['H',	'i',	'	',	'P',	'y',	't',	'h',	'o',	'n']	

Chapter	13
1.	 Change

#	The	red	player	moves	first

turn	=	"red"

to

#	The	yellow	player	moves	first

turn	=	"yellow"

Then,	delete

#	Computer	moves	first

computer_move()

Also,	delete

#	Take	column	4	in	the	first	move

if	len(occupied[3])	==	0:

				return	4

The	complete	script	is	in	conn_think1_second.py	at
https://nostarch.com/make-python-talk/.

2.	 See	ttt_think1.py	at	the	book’s	resources	website.

3.	 See	ttt_think2.py	at	the	book’s	resources	website.

4.	 The	values	are	as	follows:

cnt	=	{2:7,	1:5,	4:6}

Note	that	since	both	values	4	and	5	appear	once,	only	one	of	them	shows	up
in	the	dictionary	cnt	because	a	dictionary	cannot	have	two	elements	with	the
same	key:	maxcnt	=	4,	and	cnt[maxcnt]	=	6.

5.	 See	ttt_think.py	at	the	book’s	resources	website.

6.	 See	ttt_simulation.py	and	ttt_ml.py	at	the	book’s	resources	website.

https://nostarch.com/make-python-talk/

7.	 See	outcome_ttt_think.py	and	outcome_ttt_ml.py	at	the	book’s	resources
website.

8.	 The	yellow	player	has	won	the	10th	game.	Four	discs	are	connected
horizontally	(in	columns	2,	3,	4,	and	5).

Chapter	14
1.	 Change

start_date	=	"2020-09-01"

end_date	=	"2021-02-28"

to

start_date	=	"2021-03-01"

end_date	=	"2021-06-01"

and	change

plt.plot(stock['Date'],	stock['Adj	Close'],	c	=	'blue')

to

plt.plot(stock['Date'],	stock['Adj	Close'],	c	=	'red')

2.	 Change

formatter	=	mdates.DateFormatter('%m/%d/%Y')

to

formatter	=	mdates.DateFormatter('%m-%d-%Y')	

and	change

plt.setp(fig.get_xticklabels(),	rotation	=	10)

to

plt.setp(fig.get_xticklabels(),	rotation	=	15)

Chapter	15
1.	 Change

usd	=	response_json['bpi']['USD']

#	Get	the	price

price	=	usd['rate_float']

print(f"The	Bitcoin	price	is	{price}	dollars.")

to

gbp	=	response_json['bpi']['GBP']

#	Get	the	price

price	=	gbp['rate']

print(f"The	Bitcoin	price	is	{price}	pounds.")

2.	 Change

root.geometry("800x200")

#	Create	a	label	inside	the	root	window

label=tk.Label(text="this	is	a	label",	fg="Red",	font=

("Helvetica",	80))

to

root.geometry("850x160")

#	Create	a	label	inside	the	root	window

label=tk.Label(text="here	is	your	label",	fg="Red",	font=

("Helvetica",	80))

3.	 Change

root.after(1000,	bitcoin_watch)

to

root.after(800,	bitcoin_watch)

4.	 Change

maxprice	=	oldprice	*	1.05

minprice	=	oldprice	*	0.95

to

maxprice	=	oldprice	*	1.03

minprice	=	oldprice	*	0.97

Index

Please	note	that	index	links	to	approximate	location	of	each	term.

Symbols
"""	(triple	quotation	marks),	10,	95

#	(hash	mark),	9

%	(remainder)	operator,	10

()	(parentheses)	operator,	37

*	(asterisk)	import	statement,	43–44

*	(multiplication)	operator,	14–15,	29–30

*args	argument,	42

**	(exponent)	operator,	10,	37

+	(addition)	operator,	10,	14–15,	29–30

-	(subtraction)	operator,	10

/	(forward	slash	or	division)	operator,	10,	68

//	(integer	quotient)	operator,	10

:	(colon),	19,	40

<>	(tag)	operator,	112–113

=	(assignment)	operator,	14,	20

==	(comparison)	operator,	20

\	(backward	slash),	68

\n	(new	line)	character,	39

[]	(square	brackets)	operator,	24,	34

{}	(curly	brackets)	operator,	22,	33

A
<a>	tags,	113,	114,	115

activate	command,	46–47

addition	(+)	operator,	10,	29–30

adjust_for_ambient_noise()	function,	58,	314

Advanced	Linux	Sound	Architecture	(ALSA)	messages,	70

after()	function,	301

alarm	clocks

building,	144–146

setting,	146–147

alarm()	function,	146

alarm_clock.py	script,	144–145

alerts,	301–303

aliases,	58,	171

alpha	and	beta	values,	289,	291

alpha_beta()	function,	293

alpha_beta_hs.py	script,	292

alpha_beta.py	script,	290

ALSA	(Advanced	Linux	Sound	Architecture)	messages,	70

Anaconda	download	and	installation,	4–6

Anaconda	navigator,	4–5,	6

append()	method,	30–31

area_hs.py	script,	85

arguments,	40,	41–42

arrow	module,	136,	138–140,	300

assignment	(=)	operator,	14,	20

assignment	statements,	244–245

asterisk	import,	43–44

AttributeError	message,	37

autofxt_xdate()	function,	281

B
back4()	function,	217,	245

backward()	function,	173

backward	slash	(\),	68

Beautiful	Soup	library,	100,	112,	114–115,	119

BeautifulSoup()	function,	115

best_move()	function,	245,	249,	252,	256

beta	and	alpha	values,	289,	291

bgcolor()	function,	171

Bitcoin	price	API,	296

bitcoin_price.py	script,	298

bitcoin_tk.py	script,	300,	302

Bitcoin	watch	project,	296–303

graphical	watch,	300–301

label	widget,	299

price	data,	296–298

talking	watch,	301–303

bitcoin_watch()	function,	301,	302–303

bool()	function,	17

bool	type,	16–17

bools	(Booleans),	16–17,	18

break	command,	23

browsers	See	web	browsers

bs4	module,	100,	115

built-in	functions,	19,	38–40

bye()	command,	171

BytesIO()	function,	124

C
calculator	project,	85–86

candlestick	charts,	282–284

candle_stick()	function,	287,	288

candlestick_ohlc	function,	284

candle_stick.py	script,	283

Cartesian	coordinate	system,	172

case	sensitivity,	9,	16,	25,	59,	68,	108

cash.tif	image,	230

cell_number()	function,	194

cell_number.py	script,	193–194

chats.json	dictionary,	326

chatting	functionality,	326–327

chatting	virtual	environment,	46–47

Chinese	language	translator	project,	317–318

choice()	function,	107,	149

Chrome	browser,	126,	127

class	(CSS)	attributes,	113

clear()	function,	183,	184

click()	function,	127

code	inspection,	8–9

colon	(:),	19,	40

comments	(#),	9–10

comparison	(==)	operator,	20

computer_move()	function,	245,	256,	265

conda	command,	6

conda	install	command,	46

conditional	statements,	19–20

conn()	function,	211–212,	218,	245,	323,	339

conn_board.py	script,	208–209

conn_click.py	script,	214–215,	217–218,	220

conn_hs.py	script,	220

conn_ml_hs.py	script,	266

conn_ml.py	script,	255–256

conn_simulates.pickle	file,	254,	261

conn_simulation.py	script,	253–254

conn_think1.py	script,	242–244,	248

conn_think2.py	script,	248–249,	250

conn_think_hs.py	script,	264–265

conn_think.py	script,	250–251

Connect	Four	project.	See	also	Intelligent	Connect	Four	project,	208–224

game	board	drawing,	208–209

mouse-click	version,	210–214

rules	description,	208

rules	implementation,	214–220

in	ultimate	VPA,	325,	338–340

voice-controlled	version,	220–224

continue	command,	22

copy	module,	244

count()	method,	32

create_lines.py	script,	175–176

create_local_module.py	script,	44

CSS	(Cascading	Style	Sheets)	styles,	113,	114

curly	brackets	({})	operator,	22,	33

D
data	visualization,	279

DataFrames,	291

date	See	time	and	date

DateFormatter()	method,	281

deepcopy()	function,	244

def	statement,	44

define	statement,	160

delimiters,	27

dict()	method,	33

dictionaries,	33–37

accessing	values	in,	34

combining,	37

creating	and	adding	to,	33–34

methods,	34–35

switching	keys	and	values	in,	36

using,	35–36,	151,	191,	199,	252,	313,	316

disc_fall.py	script,	212–213

<div>	tags,	100,	101,	117

division	(/)	operator,	10

done()	function,	171,	337

dot()	function,	177–178

dots.py	script,	177

down()	function,	175

DPI	(dots	per	inch),	281

E
editor	panel,	7

elements	(list),	27

elif	keyword,	19–20

else	statement,	19–20

email()	function,	151,	152

emailing,	150–153

account	setup,	150–151

module,	151–152

sending	hands-free,	152–153

emails	dictionary,	151

emails.py	script,	150–151

english_chinese.py	script,	317–318

enumerate()	method,	30

escape	characters,	39

exception	handling,	60,	162–164,	174

explorer	command,	65,	66

exponent	(**)	operator,	10

export	command,	6

Extensible	Markup	Language	(XML)	paths	See	XPaths

extract_last_name.py	script,	25

F

False	and	True	values,	16–17

f"{}"	strings,	22

figure()	function,	281

File	menu	item,	7

file	open	commands

by	platform,	65–66

in	voice	activation	project,	66–68

file	paths

expression	syntax,	68

in	module	creation,	44–45

file-reading	project,	86–88

files.	See	also	MP3	files

temporary,	124,	311

traversing	in	folders,	105

financial	market	projects.	See	also	Bitcoin	watch	project;	stock	performance
report	project;	stock	price	data	visualization	project;	stock	price	information
project

ideas	for,	306–307

find()	method,	25–26,	140–141

findAll()	function,	115

Firefox	browser,	127

float()	function,	17–18

float	type,	15

floats	(floating-point	numbers),	15–16,	18

folders,	navigating,	66

for	loop,	21

forloop1.py	script,	22

forloop2.py	script,	23

forloop3.py	script,	23

forloop.py	script,	21

format()	function,	139

forward()	function,	173

forward	slash	(/),	68

forward4()	function,	217,	245

forward_backward.py	script,	173

from	statement,	43

functions,	38–42

and	backward	compatibility,	119

built-in	Python,	19,	38–40

defining,	40–42

generator,	158

help,	40

uses,	38

G
game	simulations,	252–255,	257–259

games	See	Connect	Four	projects;	Guess	the	Number	project;smart	game
design;	guess-the-word	project;	tic-tac-toe	projects

gedit	command,	6

generator	functions,	158

geometry()	method,	299

get()	method,	34

get_data_yahoo()	function,	281,	291

get_date.py	script,	140

getProperty()	function,	81

get_score.py	script,	34

get_ticker_symbol.py	script,	276

get_time.py	script,	138–139

get_xy()	function,	193

global	variables,	196

Gmail	passwords,	150

Gmail	SMTP,	151

Google	search	project,	64–65

Google	Translate,	310,	312,	317–318

Google	Web	Speech	API,	58,	97

goto()	function,	175

graphics	See	turtle	screens

grid_lines.py	script,	181–182

gtts-cli	tool,	76–77,	344

gTTs()	function,	311

gTTS	module

installation,	46,	75,	310

language	codes,	312

using,	74

gtts_slow.py	script,	83

Guess	the	Number	project,	94–98

guess-the-word	project,	228–239

game	board	drawing,	228–229

guessing	the	letters,	231–234

load	coin	pieces,	230–231

rules	description,	228

rules	implementation,	234–237

voice-controlled	version,	237–239

guess_hs.py	script,	94,	95–97

guess_letter.py	script,	232–233,	234

guess_word_board.py	script,	228–229,	230,	232

guess_word_hs.py	script,	237–238

guess_word.py	script,	234–236

H
hash	mark	(#),	9

headless	option,	128

help()	command,	40,	45

hideturtle()	function,	176

horizontal4()	function,	216,	245

HTML	(HyperText	Markup	Language)

parsing,	98–101,	114–116,	121–122

scraping	live	pages,	116–117

tags,	112–113

web	page	content,	113–114

HTTP	(HyperText	Transfer	Protocol)	requests,	277

HuffPost	quotes	list,	149

hyperlinks,	113,	114

HyperText	Markup	Language	See	HTML	(HyperText	Markup	Language)

HyperText	Transfer	Protocol	(HTTP)	requests,	277

I
IBM	Speech	to	Text,	58

if	statements,	19–20

image	scaling,	230–231

import	statement,	43

importing	modules	and	functions,	42–44

import_local_module.py	script,	44

indentations,	9,	21–22

index()	method,	31–32

IndexError	errors,	216

indexes	and	indexing

dictionaries,	34

game	board,	216

shift()	method,	291

strings,	24,	25–26

timestamps	as,	281

tuples,	37

IndexOutOfBounds	errors,	216

init()	function,	75

__init__.py	file,	91–92,	323

input()	function,	39

install	command,	92

int()	function,	17,	142

int	type,	16

integer	quotient	(//)	operator,	10

integers,	15–16,	18

Intelligent	Connect	Four	project.	See	also	Connect	Four	project,	241–267

machine-learning	design,	252–257

testing	effectiveness	of,	257–263

Think-Three-Steps-Ahead	design,	242–252

voice-controlled,	264–267

io	module,	124

IPython	(interactive	Python)	console,	7,	39

items()	method,	35

J
Japanese	speech	recognition	script,	314

join()	method,	27

join_string.py	script,	27

joke()	function,	148,	149

joke-telling,	147–149

jokes	list,	147–148

JSON	(JavaScript	Object	Notation)	data	formatter,	274–275,	296–297

json()	method,	298

json	module,	329–327

K
Keating,	Barry,	231–232

key-value	pairs,	33

keys()	method,	34–35

keywords,	18

know_all()	function,	164,	165

know_all.py	script,	163

knowledge	engines	See	wikipedia	module;	WolframAlpha

L
Label()	function,	299,	301

label	widgets,	299

lang_abbre	dictionary,	313,	316,	344

language	codes,	312,	314,	316

languages	See	world	languages	projects

law	of	large	numbers,	252–253

left()	function,	174

left_right.py	script,	174

len()	function,	33,	166

Linux

Anaconda	and	Spyder	installation,	5–6

chrome	browser	driver,	127

file	open	commands,	65–66

in	mysay	module,	83–84

package	installation,	92

pygame	installation,	123

SpeechRecognition	module	installation,	57

testing	microphones	in,	58

text-to-speech	modules,	74,	75,	78–79

virtual	environment	activation,	47

voice	customization,	82–83

list	comprehension,	252

list()	function,	33

list_append.py	script,	30

listen()	function,	137,	193

lists,	27–33

accessing	elements	in,	28

creating,	27–28

of	lists,	28–29

methods,	30–33

operations	on,	29–30

live_price_hs.py	script,	277–278

live_price.py	script,	272–273

live_radio()	function,	128,	129,	323,	333,	334

load()	function,	327

local	modules,	44

local	variables,	196

logic	statements,	16–17

loop_in_loop.py	script,	21

loops,	20–23

lower()	method,	25,	68,	108

M
machine-learning	game	design,	252–257

effectiveness	in	Connect	Four,	259–263

making	intelligent	moves,	255–257

simulated	game	data,	252–255

with	voice	control,	266–267

macOS

Anaconda	and	Spyder	installation,	5

chrome	browser	driver,	127

file	open	commands,	65–66

in	mysay	module,	83–84

package	installation,	92

pygame	installation,	123

SpeechRecognition	module	installation,	57

testing	microphones	in,	58

text-to-speech	modules,	74,	75,	78–79

virtual	environment	activation,	47

voice	customization,	82–83

Magic	106.7	FM,	129

mainloop()	function,	299

mapping	with	lists,	28–29

mark_cell()	function,	196–197

mark_cell.py	script,	195–196

math	calculation	engine,	161

math	module,	42–43

math	operations,	10

matplotlib	module,	279–280

matplotlib.pyplot	module,	280

max()	function,	33

messagebox	module,	199,	336

Microphone()	method,	58

microphones,	57–58

Microsoft	Bing	Speech,	58

min()	function,	33

mixer	module,	106–107

ml_move.py	script,	260–261

ModuleNotFoundError	message,	299

modules,	42–46

checking	for	installed,	45

creating,	44–45

importing	from	Python	Standard	Library,	42–44

installing	third-party,	46

most_freq_word.py	script,	35–36

mouse	click	inputs,	192–195

mouse_click.py	script,	192–193

MP3	files,	120,	121,	122

mpg123	player,	76

mplfinance	module,	283

mptpkg	package,	91

multi-player	game	scripts,	202

multiplication	(*)	operator,	14–15,	29–30

music	player	modules,	107

music	player	projects,	104–108,	325,	328–330

music_play()	function,	323,	329,	330

music_stop()	function,	323,	329,	330

my_firstmyemail.py	scriptscript.py	script,	7,	9–10

myalarm.py	script,	134–135,	146

mychart.py	script,	286

myconn.py	script,	322,	323,	339

myemail	script,	134–135

myemail.py	script,	151–152

myjoke.py	script,	134–135,	148

myknowall.py	script,	164

mymusic.py	script,	322,	323,	328–329

mynews.py	script,	322,	323,	331

myplot.py	script,	285–286

myradio.py	script,	322,	323,	333

mysay	module,	83–85

mysay.py	script,	83–84

mysr	module,	69–70

mysr.py	script,	69

mystock.py	script,	322,	323,	340–341

mytimer.py	script,	134–135,	143

mytranslate.py	script,	322,	323,	342–344

myttt.py	script,	322,	323,	334–336

mywakeup.py	script,	134–135,	137

N
negative	indexing,	24,	216

nested	loops,	21–22

new	line	(\n)	character,	39

news_brief()	function,	124,	323,	331,	332

news_brief_hs.py	script,	123–124

news_hs.py	script,	101–102

news.py	script,	100

news	reading	projects,	98–102,	325,	331–332

news_stop()	function,	323,	332

news_teaser()	function,	102

newsfile.py	script,	87

next()	function,	158,	162

Nightly	News	with	Lester	Holt	videos,	129

None	value,	34

now()	function,	139

NPR	News	website

parsing,	98–101

as	podcast	source,	119–120

npr_news.py	script,	121

O

OLS()	method,	291

Online	Radio	Box,	125–126,	127

online	vs.	offline	methods,	58,	97

online_video()	function,	130

onscreenclick()	function,	193

open	command,	65,	66

open()	function,	61,	115,	122

open_file()	function,	67

operators

math,	10

string,	14–15

os	module,	65,	66,	105–107

os_platform.py	script,	65

outcome_conn_ml.py	script,	259

outcome_conn_think.py	script,	257–258

P
pack()	method,	299

packages,	90–93

about,	90–91

creating,	91–92

distributing,	93

installing,	92

using,	92–93

PageError	exception,	162

pandas	module,	280

pandas_datareader	module,	279–283,	291

parentheses	(())	operator,	37

parse_local.py	script,	115

parsing	HTML	code,	98–101,	114–116

pass	command,	23

Path.cwd()	function,	66

pathlib	module,	65–66

pencolor()	function,	175

pensize()	function,	174

person()	function,	336

PhotoImage()	class,	230–231

pickle	module,	261

pip	install	command,	46

pixels	per	inch,	281

platform	module,	65

Play	button,	voice	activation,	125–127

player()	function,	337

play_genre.py	script,	107–108

play_live_radio.py	script,	127

play_selena_gomez.py	script,	105–106

playsound	module,	107,	329

plot()	function,	281

plot	graphs,	279–282

plot_chart_hs.py	script,	287

Plots	pane,	282

podcasts

extract	and	play,	119–122

voice	activation	of,	122–124

<p>	tags,	114,	115

precedence	of	operations,	10

price_plot()	function,	287,	288

price_plot.py	script,	280

print()	function,	7

print_say()	function,	84,	85

pyaudio	module,	56,	57

pydub	module,	310,	329

pygame	module

installation,	122–123

using,	107,	172,	329

Python.	See	also	packages

built-in	functions,	19

precedence	of	operations,	10

syntax,	9–10

variable	naming	rules,	18

Python	Standard	Library,	42

importing	from,	42–44

list	of	modules	in,	45

pyttsx3	module	installation,	74–75

pyttsx3_adjust.py	script,	82

pyttsx3_property.py	script,	81–82

Q
queries.	See	also	knowledge	engines;	word	choice

length	condition,	166

Quick,	Funny	Jokes!	website,	147–148

quotation	marks	usage,	9,	10,	16–17,	95

quotes	listings,	147–148,	149

R
radio	player	projects,	125–129,	325,	333–334

radio_stop(),	323,	333,	334

random	module,	106–107

range()	function,	21,	38–39,	182

read()	function,	87

reading	aloud

from	file,	86–88

in	Speaking	Newscast	project,	101–102

in	Voice-Controlled	Wikipedia	project,	102–104

recognize_bing()	function,	58,	314

recognize_google()	function,	58,	314

recognize_ibm()	function,	58,	314

recognize_sphinx()	function,	58,	97

Recognizer()	function,	58,	314

rectangle.py	script,	180

regression	analysis,	291

remainder	(%)	operator,	10

remove()	method,	31

repeat_me1.py	script,	84

repeat_me2.py	script,	93

repeat_me.py	script,	79–80

replace()	method,	25

RequestError	message,	59,	60

requests	module,	100,	277

rfind()	method,	344

right()	function,	174

root	windows,	299,	300,	305

round()	function,	15,	16

Run	menu	item,	7

runAndWait()	function,	76

S
say()	function,	75–76

scandir()	function,	105

Scrape	Live	Web	Pages	project,	116–119

scrape_live_web.py	script,	117–119

Screen()	function,	171

screens	See	turtle	screens

scripts

cross-platform,	65

exception	handling	in,	60,	174

Make	Python	Talk	downloads,	3

pausing	and	exiting,	94

running,	7–8

selenium	module,	125–127

sendmail()	function,	151

setp()	function,	284

setProperty()	function,	82

setup()	function,	171,	229

setup.py	script,	92

set_up_screen.py	script,	170

shift()	method,	291

show_coins.py	script,	230

show_disc.py	script,	210–211

show_turtle.py	script,	172

showinfo()	function,	200

Simple	Mail	Transfer	Protocol	(SMTP),	150,	151

simple_computer()	function,	336

simulate	function,	254,	258

simulation	examples,	257–259

sleep()	function,	95,	142,	213,	230

slicing,	24

smart_computer()	function,	336

smart	game	design.	See	also	machine	learning	strategy;	Think-Three-Steps-
Ahead	strategy

about,	241–242

comparison	of,	257–263

SMTP	(Simple	Mail	Transfer	Protocol),	150,	151

smtplib	module,	150,	151

sort()	method,	32–33

source	command,	6

Spanish	language

in	dictionary	example,	36–37

text	to	speech,	311

voice-based	translator,	318–320

Speaking	Newscast	project,	98–102

speak_spanish.py	script,	311

speak_world_languages.py	script,	312–313

special	characters,	18

speech	properties	customization,	81–83

speech	recognition

services,	58

and	volume,	330

word	choice	suggestions,	63,	97,	204–205,	223,	288,	320

speech_recognition()	function,	137

SpeechRecognition	module

importing	speech_recognition,	57–58

installation,	56–57

in	projects,	62

testing,	58–59

troubleshooting,	59–61

and	world	languages,	314

Sphinx	speech	recognition,	58,	97

split()	method,	26–27

split_string.py	script,	27

Spyder	IDE	(interactive	development	environment)

download	and	installation,	4–6

inspecting	code	in,	8–9

Plots	pane,	282

turtle	script	crashes,	174

in	virtual	environment,	47

writing	and	running	scripts	in,	6–8

square	brackets	([])	operator,	24,	34

sr_japanese.py	script,	314

sr.py	script,	58

standby	mode,	136–138

stand_by1.py	script,	70

stand_by.py	script,	59–60

statsmodels	module,	289–290

stock	market-tracking	module,	325,	340–342

stock	performance	indicators,	289

stock	performance	report	project,	289–293

add	voice	control,	292–293

analyze	performance	and	risk,	289–291

stock	price	data	visualization	project,	279–289

add	voice	control,	285–288

create	candlestick	charts,	282–285

create	stock	price	plots,	279–282

stock	price	information	project.	See	also	Talking	Stock	Market	Watch	project,
272–279

find	ticker	symbols,	274–277

retrieve	stock	prices,	272–273

with	voice	control,	277–279

stock	ticker	symbols,	272,	274

stock_info	module,	273

stock_market()	function,	323,	341,	342

stock_plot()	function,	286

stock_price()	function,	323,	341,	342

stock_watch()	function,	305

stock_watch.py	script,	303–305

StopIteration	exception,	162

str()	function,	17

str	type,	14

strings,	14–15,	23–27

conversions	to,	18

definition	and	operations,	14–15,	23

indexing	and	slicing,	24

limiting,	103

methods,	25–27,	344

subsample()	function,	230

subtraction	(-)	operator,	10

sum()	function,	33

summary()	function,	103

sys	module,	94

system()	function,	66,	107

T
tags	(<>),	112–113,	113–114

Talking	Stock	Market	Watch	project,	303–306

team_sales.py,	41

temporary	files,	124

Terminator	errors,	174

test_gtts.py	script,	77

test_pyttsx3.py	script,	75

text-based	translator	project,	317–318

text-to-speech	modules

installing,	74–75,	310

repeating	and	testing,	79–80

using,	75–79,	311–313

Think-Three-Steps-Ahead	game	design,	242–252

one	step	ahead,	242–246

two	steps	ahead,	246–249

three	steps	ahead,	249–252

with	voice	control,	264–266

third-party	module	installation,	45–46

tic-tac-toe	projects,	190–205

game	board	drawing,	190–192

game	piece	placement,	195–197

mouse	click	demonstration,	192–195

rules	description,	190

rules	implementation,	198–202

in	ultimate	VPA,	325,	334–338

voice-controlled	version,	202–205

time	and	date

arrow	module,	136

retrieving,	138–140

time	module,	94,	230

timer()	function,	143–144

timer.py	script,	141–142

timers

building,	140–143

setting,	143–144

Tk()	method,	299,	300

tkinter	module,	44,	170,	171,	172,	231,	298–299

tk_label.py	script,	299

TLS	(Transport	Layer	Security)	encryption,	151

total_sales.py,	42

tracer()	function,	179,	231

translate	module,	317–318

Translator()	class,	344

translator	projects,	317–320,	325,	342–345

Transport	Layer	Security	(TLS)	encryption,	151

traverse.py	script,	105

Treasury	Bond	rates	projects,	307

triangle.py	script,	178–179

True	and	False	values,	16–17

try	and	except	statement,	163

tts_mac_linux.py	script,	78

tts_windows.py	script,	77

ttt()	function,	323,	336,	338

ttt_board.py	script,	190–192

ttt_click.py	script,	198–199

ttt_hs_2players.py	script,	202

ttt_hs.py	script,	203–204

tuples,	37–38

turtle	module,	170,	171

turtle	screens,	170–186,	192–195

animation,	182–185

custom	shape	drawing,	178–181

dot	shape	drawing,	177–178

drawing	demonstration,	172–173

grid	lines	drawing,	181–182

and	mouse	clicks,	192–195

movement	functions,	173–176

multiple	turtles,	185–186

setup,	170–172

turtle_clock.py	script,	183–184

two-player	game	scripts,	202

two_turtles.py	script,	185–186

type()	function,	14

U
UKYexample.html	script,	113

Ultimate	VPA	project

chatting	functionality,	326–327

Connect	Four	module,	338–340

live	radio	module,	333–334

music	functionality,	328–330

news	brief	module,	331–332

overview,	322–325

stock	price	module,	340–342

tic-tac-toe	module,	334–338

voice	translator	module,	342–345

UnboundLocalError	messages,	196

UnknownValueError	message,	59,	60

up()	function,	175

update()	function,	179,	183,	184

V
valid_moves()	function,	250,	251

value	types,	14

values()	method,	35

variable	explorer	panel,	7

variables

bools,	16–17

converting	types,	17–18

defined,	14

global	vs.	local,	196

naming	rules,	18

numbers,	15–16

strings,	14–15

vertical4()	function,	217,	245

video	player	projects,	129–131

Vimeo	Katy	Perry	video,	131

virtual	environments

creating,	46–47

installing	modules	in,	56–57

vlc	module,	107,	123,	329

voice-activated	projects

Google	Search,	64–65

music	player,	104–108

opening	files,	65–68

podcasts,	119–124

radio	player,	125–129

videos,	129–131

voice-based	translator	project,	318–320

voice-controlled	projects

calculator,	85–86

Connect	Four,	220–224,	264–267

guess-the-word	game,	237–239

stock	price	retrieval,	277–279

talking	Wikipedia,	102–104

tic-tac-toe,	202–205

web	search,	61–65

voice	customization,	81–83

voice_browse.py	script,	62

voice_live_radio.py	script,	128

voice_online_video.py	script,	130

voice_open_file.py	script,	66–67

voice_search.py	script,	64

voice_to_text()	function,	62,	63,	204–205

voice_translate()	function,	323,	344,	345

voice_translator.py	script,	318–319

VPA	(Virtual	Personal	Assistant).	See	also	Ultimate	VPA	project;
WolframAlpha

alarm	clock	module,	144–147

files	download,	134–136

hands-free	email,	150–153

joke-telling	module,	147–149

know-it-all	functionality,	165–166

retrieving	time	and	date,	138–140

standby	mode,	136–138

timer	module,	140–144

vpa_final.py	script,	323–325

vpa.py	script

code,	135–136,	146,	149,	152–153,	165

using,	138,	144,	147,	149,	153,	165–166

W

Wait	Wait	.	.	.	Don't	Tell	Me!	(radio	show),	124

WaitTimeoutError	message,	59,	60

wakeup()	function,	137

Wall	Street	Journal,	61

web	browsers

drivers	for,	127

opening	with	voice,	61–63

web	scraping

in	live	pages	project,	116–119

in	Speaking	Newscast	project,	98–101

web	search	project,	61–65

webbrowser	module,	61,	121

webdriver()	function,	127

while	loop,	20–21

whileloop.py	script,	20

widgets,	298–299

wiki_hs.py	script,	103–104

Wikipedia,	315

wikipedia	module,	103,	162,	163

wiki.py	script,	103

wiki_world_languages.py	script,	315–316

Windows

Anaconda	and	Spyder	installation,	4–5

chrome	browser	driver,	127

file	open	commands,	65–66

in	mysay	module,	83–84

package	installation,	92

pygame	installation,	123

SpeechRecognition	module	installation,	56–57

testing	microphones	in,	58

text-to-speech	modules,	74,	77–78

virtual	environment	activation,	46–47

voice	customization,	81–82

win_game()	function,	200,	217,	245,	254

WolframAlpha

about,	156

API	key,	156–158

handling	exceptions,	162–164

retrieving	information,	158–159

uses,	159–162

wolframalpha	module,	158,	163

wolfram.py	script,	158

word	choice	suggestions,	63,	97,	204–205,	223,	288,	320

world	languages	projects,	310–320

dictionary	applications,	36–37

modules,	82–83,	310

speech	recognition,	314

talking	wikipedia,	315–317

text-based	translator,	317–318

text-to-speech	conversions,	311–313

voice-based	translator,	318–320

write()	function,	184

X
xdg-open	command,	65,	66

Xpaths,	126–127

Y
Yahoo!	Finance,	272,	274

yahoo_fin	package,	272

Z
zero-based	indexing,	24

zoom()	method,	231

	Title Page
	Copyright
	Dedication
	About the Author
	ACKNOWLEDGMENTS
	Introduction
	About This Book
	What’s in This Book?

	Part I: Getting Started
	Chapter 1: Setting Up Python, Anaconda, and Spyder
	Introducing Anaconda and Spyder
	Installing Anaconda and Spyder
	Install Anaconda and Spyder in Windows
	Install Anaconda and Spyder in macOS
	Install Anaconda and Spyder in Linux

	Using Spyder
	Write Python in Spyder
	Inspect Code in Spyder

	Understanding Coding in Python
	Python Syntax
	Basic Operations in Python

	Summary
	End-of-Chapter Exercises

	Chapter 2: Python Refresher
	Variables and Values
	Strings
	Floats
	Integers
	Bools
	Convert Variable Types
	Rules for Variable Names

	Loops and Conditional Execution
	Conditional Execution
	Loops
	Loops in Loops
	Loop Commands

	Strings
	String Indexing
	String Slicing
	String Methods

	Lists
	Create a List
	Access Elements in a List
	Use a List of Lists
	Add or Multiply Lists
	List Methods
	Use Built-in Functions with Lists
	list()

	Dictionaries
	Access Values in a Dictionary
	Use Dictionary Methods
	How to Use Dictionaries
	Switch Keys and Values
	Combine Two Dictionaries

	Tuples
	Functions
	Use Built-in Python Functions
	Define Your Own Functions

	Modules
	Import Modules
	Create Your Own Modules
	Use Third-Party Modules

	Create a Virtual Environment
	Activate the Virtual Environment in Windows
	Set Up Spyder in the Virtual Environment in Windows

	Summary
	End-of-Chapter Exercises

	Part II: Learning to Talk
	Chapter 3: Speech Recognition
	Install the SpeechRecognition Module
	In Windows
	In Mac or Linux

	Test and Fine-Tune SpeechRecognition
	Import SpeechRecognition
	Test SpeechRecognition
	Fine-Tune the Speech Recognition Feature

	Perform a Voice-Controlled Web Search
	Use the webbrowser Module
	Add Voice Control
	Perform a Google Search

	Open Files
	Use the os and pathlib Modules to Access and Open Files
	Open Files via Voice Control

	Create and Import a Local Module
	Create the Local Module mysr
	Import mysr

	Summary
	End-of-Chapter Exercises

	Chapter 4: Make Python Talk
	Install the Text-to-Speech Module
	Setup
	Test Your Text-to-Speech Module

	Repeat After Me
	Customize the Speech
	Retrieve Default Settings in the pyttsx3 Module in Windows
	Adjust Speech Properties in the pyttsx3 Module in Windows
	Customize the gTTS Module in Mac or Linux

	Build the Local mysay Module
	Create mysay
	Import mysay

	Build a Voice-Controlled Calculator
	Read a File Aloud
	Summary
	End-of-Chapter Exercises

	Chapter 5: Speaking Applications
	Create Your Self-Made Local Python Package
	What’s a Python Package?
	Create Your Own Python Package
	Test Your Package
	More on Python Packages

	Interactive Guess the Number Game
	Speaking Newscast
	Scrape the News Summary
	Add the Text-to-Speech Features

	Voice-Controlled Wikipedia
	Access Wikipedia
	Add Speech Recognition and Text to Speech

	Voice-Activated Music Player
	Traverse Files in a Folder
	Python, Play Selena Gomez
	Python, Play a Country Song

	Summary
	End-of-Chapter Exercises

	Chapter 6: Web Scraping Podcasts, Radios, and Videos
	A Primer on Web Scraping
	What Is HTML?
	Extract Information with Beautiful Soup

	Scrape Live Web Pages
	Voice-Activated Podcasts
	Extract and Play Podcasts
	Voice-Activate Podcasts

	Voice-Activated Radio Player
	Install the selenium Module
	Control Web Pages
	Voice-Activate Live Radio

	Voice-Activated Videos
	Summary
	End-of-Chapter Exercises

	Chapter 7: Building a Virtual Personal Assistant
	An Overview of Your VPA
	Download VPA Files
	Install the arrow Module

	Manage the Standby Mode
	Create the Local Module mywakeup
	Set Some Responses

	Ask Your VPA to Set a Timer
	Tell the Time with Python
	Build a Timer
	Create the mytimer Module
	Set the Timer

	Ask Your VPA to Set an Alarm Clock
	Build an Alarm Clock
	Create the Alarm Clock Module
	Set an Alarm

	Ask Your VPA to Tell a Joke
	Create Your Joke List
	Create a Joke Module
	Tell a Joke

	Send Hands-Free Email
	Send Email with Written Commands
	Create the Email Module
	Add the Email Functionality

	Summary
	End-of-Chapter Exercises

	Chapter 8: Know-It-All VPA
	Get Answers from WolframAlpha
	Apply for an API Key
	Retrieve Information
	Explore Different Areas of Knowledge

	Add a Know-It-All Functionality to Your VPA
	What WolframAlpha Cannot Answer
	Create the myknowall Module
	A VPA That Can Answer (Almost) Any Question for You

	Summary

	Part III: Interactive Games
	Chapter 9: Graphics and Animation with the turtle Module
	Basic Commands
	Create a turtle Screen
	Create Movements

	Basic Shapes
	Use the dot() Function
	Draw Your Own Shapes
	Draw Grid Lines

	Animation
	How Animation Works
	Use Multiple Turtles

	Summary
	End-of-Chapter Exercises

	Chapter 10: Tic-Tac-Toe
	Game Rules
	Draw the Game Board
	Create the Game Pieces
	How Mouse Clicks Work in turtle
	Convert Mouse Clicks to Cell Numbers
	Place Game Pieces

	Determine Valid Moves, Wins, and Ties
	Voice-Controlled Version
	Summary
	End-of-Chapter Exercises

	Chapter 11: Connect Four
	Game Rules
	Draw the Game Board
	The Mouse-Click Version
	Drop a Disc
	Animate the Falling Discs

	Determine Valid Moves, Wins, and Ties
	The Voice-Controlled Version
	Summary
	End-of-Chapter Exercises

	Chapter 12: Guess-the-Word Game
	Game Rules
	Draw the Game Board
	The Text Version
	Load the Coins
	Guess the Letters
	Determine Valid Guesses, Wins, and Losses

	The Voice-Controlled Version
	Summary
	End-of-Chapter Exercises

	Chapter 13: Smart Games: Adding Intelligence
	The Think-Three-Steps-Ahead Strategy
	Think One Step Ahead
	Think Two Steps Ahead
	Implement the Think-Two-Steps-Ahead Strategy
	Think Three Steps Ahead

	The Machine-Learning Strategy
	Create a Dataset of Simulated Games
	Apply the Data

	Test the Effectiveness of the Two Strategies
	The Think-Three-Steps-Ahead Strategy
	The Machine-Learning Strategy
	Why Doesn’t the Machine-Learning Strategy Work Well in Connect Four?

	Voice-Controlled Intelligent Connect Four Games
	A Voice-Controlled Game That Thinks Ahead
	A Voice-Controlled Game Using Machine Learning

	Summary
	End-of-Chapter Exercises

	Part IV: Going Further
	Chapter 14: Financial Applications
	Python, What’s the Facebook Stock Price?
	Obtain the Latest Stock Price
	Find Ticker Symbols
	Retrieve Stock Prices via Voice

	Voice-Controlled Data Visualization
	Create Stock Price Plots
	Create Candlestick Charts
	Add Voice Control

	Voice-Controlled Stock Report
	Analyze Recent Stock Performance and Risk
	Add Voice Control

	Summary
	End-of-Chapter Exercises

	Chapter 15: Stock Market Watch
	Bitcoin Watch
	How to Read JSON Data
	A Graphical Bitcoin Watch
	A Talking Bitcoin Watch

	A Talking Stock Market Watch
	Apply the Method to Other Financial Markets
	Summary
	End-of-Chapter Exercises

	Chapter 16: Use World Languages
	Text to Speech in Other Languages
	Install Modules
	Convert Text to Speech in Spanish
	Support Text to Speech in Other Languages
	Convert Text to Speech in World Languages

	Speech Recognition in Major World Languages
	A Talking Wikipedia
	Create Your Own Voice Translator
	A Text-Based Translator
	A Voice-Based Translator

	Summary

	Chapter 17: Ultimate Virtual Personal Assistant
	An Overview of the Final VPA
	The Chatting Functionality
	The Music Functionality
	Create a Music Module
	Activate the Music Functionality

	The News Brief Module
	Create a News Module
	Activate the News Functionality

	The Live Radio Module
	Create a Radio Module
	Activate the Radio Functionality

	The Tic-Tac-Toe Module
	Create a Tic-Tac-Toe Module
	Activate Tic-Tac-Toe

	The Connect Four Module
	Create a Connect Four Module
	Activate Connect Four

	The Stock Price Module
	Create a Stock Market–Tracking Module
	Activate the Stock Market–Tracking Functionalities

	The Voice Translator Module
	Create a Translator Module
	Activate the Voice Translator

	Summary

	Appendix A: Install Modules to Play Audio Files
	Install the playsound Module
	Windows
	Mac
	Linux

	Install the pydub Module
	Install the pygame Module
	Windows
	Mac
	Linux

	Install the vlc Module
	Sample Scripts to Test the Four Modules
	The playsound Module
	The pydub Module
	The pygame Module
	The vlc Module

	Appendix B: Suggested Answers to End-of-Chapter Exercises
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	Chapter 7
	Chapter 9
	Chapter 10
	Chapter 11
	Chapter 12
	Chapter 13
	Chapter 14
	Chapter 15

	Index

